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Abstract
Detection of species in nature at very low abundance requires innovative methods. 
Conventional PCR (cPCR) and real‐time quantitative PCR (qPCR) are two widely used 
approaches employed in environmental DNA (eDNA) detection, though lack of a 
comprehensive comparison of them impedes method selection. Here we test detec‐
tion capacity and false negative rate of both approaches using samples with different 
expected complexities. We compared cPCR and qPCR to detect invasive, biofouling 
golden mussels (Limnoperna fortunei), in samples from laboratory aquaria and irriga‐
tion channels where this mussel was known to occur in central China. Where appli‐
cable, the limit of detection (LoD), limit of quantification (LoQ), detection rate, and 
false negative rate of each PCR method were tested. Quantitative PCR achieved a 
lower LoD than cPCR (1 × 10−7 vs. 10−6 ng/μl) and had a higher detection rate for 
both laboratory (100% vs. 87.9%) and field (68.6% vs. 47.1%) samples. Field water 
samples could only be quantified at a higher concentration than laboratory aquaria 
and total genomic DNA, indicating inhibition with environmental samples. The false 
negative rate was inversely related to the number of sample replicates. Target eDNA 
concentration was negatively related to distance from sampling sites to the water 
(and animal) source. Detection capacity difference between cPCR and qPCR for 
genomic DNA and laboratory aquaria can be translated to field water samples, and 
the latter should be prioritized in rare species detection. Field environmental samples 
may involve more complexities—such as inhibitors—than laboratory aquaria samples, 
requiring more target DNA. Extensive sampling is critical in field applications using 
either approach to reduce false negatives.
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1  | INTRODUC TION

Accurately detecting rare species—such as newly introduced nonin‐
digenous species (NIS) or endangered native species—is critical for 
both conservation and management. Imperfect detection through 
either false positive or false negative results impedes these efforts, 
particularly with respect to rapid response to NIS incursions (Zhan 
& MacIsaac, 2015). However, detecting these species is challenging 
either because of their small population size and/or geographically‐
constrained distribution (Branstrator, Beranek, Brown, Hembre, 
& Engstrom, 2017; Robertson et al., 2017; Simberloff et al., 2013; 
vander Zanden, 2010).

Environmental DNA (eDNA) refers to DNA released by organ‐
isms into their environment and is distributed where species cur‐
rently or previously existed or where it has been advected from 
these sources. eDNA can be extracted from bulk environmental 
samples and thus can be targeted and amplified using properly de‐
signed PCR primers (see Taberlet, Coissac, Hajibabaei, & Rieseberg, 
2012). eDNA is particularly useful for fast, sensitive and accurate 
species detection and discrimination at low abundance (Bohmann 
et al., 2014; Jerde, Mahon, Chadderton, & Lodge, 2011; Rees, 
Maddison, Middleditch, Patmore, & Gough, 2014; Zhan & MacIsaac, 
2015). This feature has resulted in deployment of eDNA‐based 
methods as a sensitive detection tool for a broad variety of aquatic 
species (e.g. Jerde et al., 2011; Boothroyd, Mandrak, Fox, & Wilson, 
2016; Agersnap et al., 2017; Jackson, Myrholm, Shaaw, & Ramsfield, 
2017; Torresdal, Farrell, & Goldberg, 2017; Voros, Marton, Schmidt, 
Gal, & Jelic, 2017). Despite this, eDNA‐based techniques are imma‐
ture, and technical limitations must be considered when planning to 
employ these tools (see Wilcox et al., 2013; Goldberg, Strickler, & 
Pilliod, 2014; Deiner, Walser, Mächler, & Altermatt, 2015; Goldberg 
et al., 2016).

Technical problems may complicate interpretation of eDNA re‐
sults (Rees et al., 2014). For example, cross‐contamination during 
sample collection, transport, or laboratory preparation may cause 
false positive results (i.e. target NIS is absent but DNA is detected 
in samples; Goldberg et al., 2016), while false negatives (i.e. target 
NIS is present but DNA is not detected) can occur if inhibitors are 
present in eDNA used as PCR templates (Jane et al., 2015) or if PCR 
primers have insufficient sensitivity (Wilcox et al., 2013; Xiong, Li, & 
Zhan, 2016). It is imperative that detection programs have a low false 
negative rate given that they may delay recognition of, and rapid re‐
sponse to, presence of NIS, or may fail to detect a target endan‐
gered species. According to Goldberg et al (2016), an eDNA‐based 
survey has two primary tasks: eDNA retrieval (e.g. sample collection 
and DNA extraction) and eDNA amplification (e.g. inhibitor removal 
and PCR). Many studies have focused on the former to improve de‐
tection rate (e.g. Renshaw, Olds, Jerde, Mcveigh, & Lodge, 2014; 
Takahara, Minamoto, & Doi, 2014; Deiner et al., 2015; Spens et al., 
2016; Hinlo, Gleeson, Lintermans, & Furlan, 2017; Xia et al., 2018), 
while attention has rarely been paid to the latter. Given that eDNA 
is often found in trace amounts (Furlan, Gleeson, Hardy, & Duncan, 
2016), robust PCR methods are essential to eDNA‐based studies.

At present, conventional PCR (cPCR) and real‐time quantitative 
PCR (qPCR) are the two major approaches used in eDNA‐based 
species detection. Droplet digital PCR (ddPCR) has been suggested 
more sensitive than both, though it currently has limited use owing to 
cost and operational complexity (Doi et al., 2015; Nathan, Simmons, 
Wegleitner, Jerde, & Mahon, 2014). A review of the literature re‐
vealed that 37% and 61% of eDNA studies employed cPCR and qPCR, 
respectively, for aquatic species detection (Z. Xia, unpublished). It 
has been suggested that qPCR, which is a quantitative or semi‐quan‐
titative method, is the more sensitive method (Balasingham, Walter, 
& Heath, 2017), although cPCR is more readily available to most 
molecular laboratories. This wide availability lends itself to greater 
use in rare species detection (Ojaveer et al., 2014; Ricciardi et al., 
2017; Roy et al., 2015), as it is cost‐efficient and can be very sensitive 
(e.g. Jerde et al., 2011). Ideally, a robust method for environmental 
samples should maintain sensitivity for samples obtained from dif‐
ferent sources. Therefore, comparison of the two most widely used 
PCR methods for samples from different sources may assist in fu‐
ture method selection for rare species detection. To our knowledge, 
however, this has not been well explored although several studies 
have discussed detection probability for eDNA samples using both 
methods. For example, Nathan et al. (2014) quantified eDNA signals 
using cPCR, qPCR, and ddPCR from mesocosm aquaria and observed 
100% detection of target species across all platforms; however, they 
did not distinguish detection power of cPCR or qPCR. In another 
study, Piggott (2016) observed a higher detection rate of fish from 
dam water samples using qPCR than cPCR, though the investigators 
had limited sample sources. Additional empirical evidence derived 
from various systems is critical to guide future method selection.

In this study, we compared cPCR with qPCR to detect a highly 
invasive mollusk, the golden mussel Limnoperna fortunei, from en‐
vironmental water samples. First, we determined the limit of de‐
tection (LoD) of each PCR method under their respective optimal 
conditions using total genomic DNA. Subsequently, we tested water 
samples from both laboratory aquaria and natural irrigation chan‐
nels containing target DNA and calculated false negative rate of 
each method while varying sample replication. Finally, we calculated 
quantification level of qPCR among the aforementioned samples 
which differed in complexity, and compared species detectability 
using both methods to explore performance difference.

2  | METHODS

2.1 | Sample collection and DNA extraction

Animals used in this study were collected from the Danjiangkou 
Reservoir, China (32°39′0″N, 111°41′15″E) and reared in a 60 L tank 
at 24°C before use. We used water samples maintained in labora‐
tory aquaria and from the natural environment to test the two PCR 
methods. To prepare laboratory samples, we reared a golden mussel 
clump (12 adult individuals) at 24°C in a 15 L well‐aerated aquarium 
for 24 hr. We then removed animals from the tank and stopped aera‐
tion. The tank was left undisturbed for 12 hr before we began to 
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collect water samples. Three 50 ml water samples were collected 
from the surface layer (~10 cm) of the aquarium, using separate 
50 ml syringes for each replicate. We sampled at 11 time points over 
the course of a week, yielding 33 samples (Supporting Information 
Table S1).

To prepare natural water samples, we sampled three irrigation 
channels in Dengzhou, China (Figure 1). These channels were ex‐
pected to contain eDNA of the golden mussel since the species was 
recorded in the vicinity in a preliminary field survey. Water source 
in each channel was controlled by a discharge gate at its source 
(Figure 1). The discharge gates A and C were open while gate B 
was closed during sampling. Average water velocity was about 0.5 
and 0.2 m/s in channels A and C, respectively, while channel B was 
static as the discharge gate B was completely closed. Water depth 
of channels A, B, and C were about 1.8, 0.4, and 0.6 m, respectively. 
Sample collection order was channel C, B, and then A, and always 
from the downstream to upstream sites. We collected three 100 ml 
water samples from the surface layer (~20 cm) at each site (n = 17), 
yielding a total of 51 samples. All samples were transported on ice to 
the laboratory within 24 hr of collection, and each was filtered onto 
a cellulose acetate microporous membrane filter (0.45 μm pore size). 
Each filter was cut in half and separately stored in a 2 ml centrifuge 
tube at −20°C until DNA extraction.

Total genomic DNA was extracted from fresh tissue of golden 
mussel using the DNeasy Blood & Tissue Kit (Qiagen). A randomly 
selected half‐filter for each sample was extracted using the phe‐
nol‐chloroform‐isoamyl alcohol (PCI) method of Renshaw et al. 
(2014). Original DNA extracts were diluted 1:10 prior to use in PCR 

to reduce potential influence of PCR inhibitors (McKee, Spear, & 
Pierson, 2015).

2.2 | cPCR analyses

We used a species‐specific primer pair developed by Xia et al. (2018) 
to target a 197 bp fragment of the mitochondrial cytochrome c oxi‐
dase subunit I (COI) gene of the golden mussel. We ran 20 µl PCR 
mix following the methods detailed in Xia et al. (2018) with minor 
revisions: 5 µl template DNA was used in each reaction and 58°C 
was applied as the annealing temperature in this study. PCR prod‐
ucts were visualized on 1.5% agarose gels using an automatic gelatin 
image analysis system (JiaPeng, Shanghai, China) and target bands 
were identified by eye. The LoD of the cPCR was tested using 
10× serial dilutions of total genomic DNA with a concentration of 
1.0 × 100–10−8 ng/μl. A total of 10 replicates for each concentration 
was applied, and the LoD was defined as the lowest concentration 
returning at least one positive replicate (Agersnap et al., 2017). We 
Sanger‐sequenced four random positive amplicons of the field sam‐
ples to confirm specificity of our primers, which was identified as 
species‐specific in a previous study (Xia et al., 2018).

2.3 | qPCR analyses

We used linear regression of quantification cycle (Cq) on DNA con‐
centration (i.e. Log quantity) by amplifying the same serial dilu‐
tions of total genomic DNA mentioned above. Five replicates for 
each concentration were applied to construct the standard curve, 

F I G U R E  1  Map of sampling sites in 
the three irrigation channels (A, n = 6; B, 
n = 4; C, n = 7), identifying the location 
of each site and detection results of the 
golden mussel (Limnoperna fortunei) by 
both conventional PCR and quantitative 
PCR. Arrows indicate the direction of 
water flow. Three replicate samples 
were collected per site, and sampling 
was carried out from downstream to 
upstream. Inset indicates location of 
the study area (asterisk), and dotted line 
indicates boundary of Henan Province and 
Hubei Province, China
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and five no‐template‐controls (NTC) using double‐distilled water 
(ddH2O) were applied on the same 96‐well plate to act as negative 
controls. We used instrumental default parameters – 20 µl PCR 
mix containing 1× SYBR Green master mix (Roche Applied Science, 
Germany), 0.4 μM each primer, and 5.0 µl DNA template (i.e. 1:10 
diluted eDNA) on a LightCycler® 96 Instrument (Roche Applied 
Science, Germany). The thermal profile contained 60 s pre‐incuba‐
tion (95°C), followed by 50 cycles of 10 s for denaturation (95°C), 
20 s for annealing (62°C), and 30 s for extension (72°C), followed by 
10 min for final extension. Our primer pair can successfully amplify 
golden mussel at an annealing temperature from 45–65°C (Xia et al., 
2018), and we used 58°C for cPCR and 62°C for qPCR, respectively, 
as they were proven optimal in pilot experiments. A melting analysis 
(95°C/10 s, 65°C/60 s, 97°C/1 s) was conducted following the am‐
plification to generate a melting curve for PCR product in each well. 
The LoD of qPCR was identified as the lowest concentration produc‐
ing at least one positive detection out of the five replicates.

After qPCR, all melting curves were examined prior to the use 
of the returned Cq values by the built‐in software. Specific amplifi‐
cation of our target species was characterized by a peak at the cor‐
rect melting temperature (Peñarrubia et al., 2016; Smith & Osborn, 
2009), which was generated from amplifications of a high concen‐
tration of total genomic DNA (e.g. 1.0 ng/μl). The Cq values returned 
from specific amplifications were identified as valid when the corre‐
sponding melting curves were normally distributed, otherwise the 
Cq values were dismissed (invalid Cq). To plot the standard curve, 
only serial dilutions of the total genomic DNA with ≥3 valid Cq values 
were considered. The corresponding efficiency of qPCR was calcu‐
lated by the built‐in software and descriptors of the standard curve 
were reported following Smith and Osborn (2009).

All amplification results of water samples underwent the same 
procedure as the standard curve prior to the use of Cq. Specifically, 
for those samples which returned positive amplifications but invalid 
Cq values (i.e. their melting curves were skewed or peaked at the 
NTC melting temperature), new Cq values were assigned to them 
according to the shape of the melting curves. The limit of quanti‐
fication (LoQ) refers to the lowest concentration where the target 
species can be reliably quantified (Armbruster & Pry, 2008), and we 
defined it as the lowest concentration returning all positive repli‐
cates according to Agersnap et al. (2017). A linear regression model 
was applied to test the relationship between eDNA concentration 
(i.e. Cq) in irrigation channels and the distance to water source (i.e. 
discharge gate).

We also tested the importance of collecting replicate samples 
per time‐point/site to reduce false negative results. We calculated 
the false negative rate when collecting between one and three rep‐
licates per time‐point/site, using the scenario with highest detection 
rate as a baseline. For the one‐sample scenario, each sample was 
considered as a replicate. Alternatively, every possible two‐sample 
combination was assessed in the two‐sample scenario. For both PCR 
methods, all laboratory and field samples that initially failed to am‐
plify underwent a second amplification and the results of both am‐
plification attempts were combined to calculate the detection rate. 

One sampling time‐point/site was considered a positive detection if 
any replicate tested positive.

2.4 | Quality control

To prevent cross‐contamination during sample collection, we used 
new bottles for water sample collection. Two bottles filled with 
deionized water and transported with sampling bottles during each 
sampling trip served as sampling controls. In the laboratory, all  
nondisposable equipment (i.e. forceps, scissors, beakers, syringes, 
and filtration platform) involved in sample collection, filtration, and 
DNA extraction were treated using 10% commercial bleach for a 
minimum of 10 min before use to destroy residual DNA, followed 
by thorough rinse with deionized water to remove the bleach. Blank 
controls were incorporated during the process of water sample fil‐
tration, and negative controls using ddH2O were included in all PCRs 
to monitor contaminations in laboratory practice.

3  | RESULTS

3.1 | Limit of detection and quantification

The LoD was tested at 1 × 10−6 and 1 × 10−7 ng/μl for cPCR and 
qPCR, respectively (Supporting Information Table S2), indicating 
higher sensitivity of the latter method. For qPCR, one of five NTC 
replicates exhibited amplification signals (Cq: 39.16) with a melting 
temperature of 77–78°C (Supporting Information Figure S1 lower). 
All high concentrations (i.e. >1 × 10−5 ng/μl) of genomic DNA re‐
turned valid Cq values with a melting temperature of 79–80°C 
(Supporting Information Figure S1 upper). eDNA at low concentra‐
tions (i.e. ≤1 × 10−5 ng/μl) was partially amplified, returning either 
valid (i.e. positive amplifications with normally distributed melting 
curves), invalid (i.e. skewed melting curves or NTC amplifications), 
or no Cq values (i.e. no amplification signals). The standard curve 
(Supporting Information Figure S2) was plotted using serial dilution 
of 1.0 × 100–10−5 ng/μl in which three valid Cq values were returned 
at 1.0 × 10−5 ng/μl and five valid Cq values at higher concentrations 
(Supporting Information Table S2). Amplification efficiency of qPCR 
was 98%. The LoQ of total genomic DNA of qPCR was identified as 
1.0 × 10−4 ng/μl.

3.2 | Detection of laboratory and field 
water samples

All positive amplifications of water samples (except the ones that 
exclusively exhibited NTC fluorescence signals) demonstrated spe‐
cies‐specificity. We assigned 33, 34, and 35 as Cq to those water 
samples which exhibited positive amplification of target species but 
returned skewed melting curves (Supporting Information Figure S3). 
These values were assigned to ensure that they were at least 3.3 
fewer than those from NTC (Smith & Osborn, 2009), and to guaran‐
tee an approximately continuous distribution of sample concentra‐
tions. All sampling controls and laboratory blanks demonstrated no 
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amplifications of the target species by either PCR method through‐
out this study, and four randomly sequenced samples returned cor‐
rect identification of the golden mussel from the field samples.

Quantitative PCR achieved a higher detection rate than cPCR 
in both laboratory (100% vs. 87.9%) and field (68.6% vs. 47.1%) 
sample replicates (Figure 2 upper), resulting in five more sites de‐
tected positive in water channels (Figure 1) by the former method. 
For those sample replicates that were assigned Cq values, 83.3% of 
laboratory samples (n = 12) and 40% of field samples (n = 15) were 
also detected positive using cPCR (Figure 2 lower). Positive detec‐
tions by cPCR were always a subset of those by qPCR. We found 
significant differences among quantifying total genomic DNA, lab‐
oratory aquaria, and field samples by qPCR by comparing the three 
lowest concentration (i.e. three highest valid Cq values) of each 
group (Figure 3). Specifically, total genomic DNA could be quanti‐
fied to a significantly lower level (10−4.28 ± 0.13 ng; ANOVA, F2,6 = 218, 
p < 0.001) than either laboratory (10−3.03 ± 0.06 ng) or field samples 
(10−2.92 ± 0.06 ng). Furthermore, laboratory samples could be quanti‐
fied to a significantly lower amount than field samples (t4 = −2.273, 
p = 0.043, one‐tailed).

False negative detections were observed using both PCR meth‐
ods when only one replicate sample was collected, though this 
rate declined by utilizing additional sample replicates (Figure 4). 

Specifically, the false negative rate of cPCR decreased from 9.1% 
to 0%, and from 42.9% to 35.7% when sample replicates increased 
from one to three for laboratory and for field samples, respectively. 
Cq values were positively correlated with distance from the water 
source in channels A (Figure 5 upper, p < 0.001) and C (Figure 5 mid‐
dle, p = 0.03) or their combination (Figure 5 lower, p < 0.001), indi‐
cating a decrease in DNA concentration with distance downstream.

F I G U R E  2  Detection rate of (upper) all replicate samples from 
laboratory aquaria (n = 33) and field (n = 51) and (lower) a subset 
of the former (n = 12) and latter (n = 15) in which quantification 
cycle (Cq) values were assigned to samples owing to skewed melting 
curves

F I G U R E  3  Mean (±SD) of three lowest quantities (solid circle) 
and their valid quantification cycle (Cq) values (bar) of target 
DNA detected from total genomic DNA, laboratory samples, and 
field samples, respectively, using quantitative PCR. Cq refers to 
the number of cycles required for fluorescent signals to reach 
a threshold. Different letters indicate significant differences 
(p < 0.05)

F I G U R E  4  False negative rate using one, two, and three 
replicates in the laboratory (upper) and in the field (lower) using 
cPCR (grey bar) and qPCR (white bar). Dashed line indicates 100% 
positive detections for laboratory samples (upper) and positive 
detections for field samples (lower) determined by quantitative PCR 
when three replicates were used
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4  | DISCUSSION

Conventional PCR and qPCR methods are essentially the same with 
respect to amplifying target fragments (Smith & Osborn, 2009). An 
important reason why qPCR was suggested to be more sensitive 
than cPCR is that different methods are utilized to detect PCR prod‐
ucts; the former detects PCR products on‐site by measuring fluores‐
cence in each single PCR plate well, providing higher sensitivity than 
the ethidium bromide‐stained, gel‐based detection under ultraviolet 
light used in this study. qPCR detects PCR products at the expo‐
nential stage of the PCR phase while cPCR does so at the plateau 
stage (Smith & Osborn, 2009), allowing the former to be less vulner‐
able to product degradation at high reaction cycles as reagents are 
exhausted. This characteristic also restrains cPCR to be conducted 

with fewer cycles than the former (e.g. Nathan et al., 2014) due to 
accumulation of artifacts (e.g. chimeras) at higher numbers of cycles 
(Qiu et al., 2001; Smith & Osborn, 2009). Furthermore, qPCR can ex‐
clude ambiguity of positive/negative interpretation which may cause 
bias in cPCR (Nathan et al., 2014). We determined a lower LoD with 
qPCR than cPCR (i.e. 1.0 × 10−7 vs. 1.0 × 10−6 ng/μl) which highlights 
an advantage of the former, while both methods exhibited 100% suc‐
cessful amplification at higher DNA concentrations (≥1 × 10−4 ng/μl). 
This is consistent with previous studies that conducted species de‐
tection in laboratory aquaria (e.g. Nathan et al., 2014), indicating that 
detection probability of cPCR and qPCR may differ only at low con‐
centrations. To push detection limit to even lower levels, more effort 
is required to optimize PCR protocols or to improve primers design 
to reduce possible dimers. We used a 10× dilution to prepare vary‐
ing total genomic DNA concentrations and only limited amplification 
success were observed in low concentrations (i.e. 1 × 10−5−10−7 ng/
μl). In future studies, a more refined dilution series (e.g. 2×) could 
be used to determine a refined LoD difference of both PCR meth‐
ods. It should be acknowledged that formulating more sensitive PCR 
protocols based on the cPCR detection mechanism is possible. For 
instance, nested PCR which is widely used in diagnostic laboratories, 
can offer almost double the number of cycles of amplification by 
using nested duplex primer pairs (e.g. Sotlar et al., 2004), and can be 
comparable with qPCR regarding detection sensitivity under some 
circumstances (e.g. Cullen, Lees, Toth, & Duncan, 2001). However, 
wide application of it in rare species detection from environmental 
samples may be challenged because of its operational complexity 
and time required.

Quantitative PCR achieved a higher detection rate for water 
samples than cPCR (Figure 2 upper), consistent with observations in 
previous studies (e.g. Piggott, 2016), reflecting the higher sensitivity 
(or lower LoD) of the former. In addition to LoD difference, PCR in‐
hibitors, which occur widely in environmental samples (McKee et al., 
2015), may also contribute to detection rate difference between the 
two methods. PCR inhibitors such as humic acid or nontarget species 
DNA may impact the final quality of eDNA (Pedersen et al., 2015; 
Wilson, 1997), affecting PCR efficiency. Relative to total genomic 
DNA, DNA in environmental samples may have a more uncertain 
fate owing to various factors such as season, UV, pH, temperature, 
substrate type, and downstream transport (Buxton, Groombridge, 
& Griffiths, 2017; Jane et al., 2015; Strickler, Fremier, & Goldberg, 
2015), and will likely contain higher amounts of impurities that in‐
hibit amplification and result in lower PCR efficiency (Pedersen et 
al., 2015). This view is consistent with the finding that target DNA 
can be quantified (i.e. valid Cq values returned) to a lower level for 
total genomic DNA than for laboratory or field samples using qPCR 
(Figure 3). We expect that both cPCR and qPCR may suffer from 
inhibition in the same manner, however, we observed a greater de‐
tection rate difference between methods for all sample replicates 
from field than from laboratory samples (21.5% vs. 12.1%; Figure 2 
upper). Furthermore, for the subset samples that were assigned Cq 
values due to skewed melting curves, a greater detection rate differ‐
ence (60% vs. 16.7%) was observed in field samples (Figure 2 lower). 

F I G U R E  5  Linear regression of quantification cycle (Cq) against 
distance to water source (gate A) for water samples collected from 
channel A (upper, df = 15, p < 0.001), channel C (middle, df = 16, 
p = 0.03), and combination (lower, df = 32, p < 0.001). Each circle 
indicates a replicate showing positive detection of golden mussel by 
quantitative PCR, and the thicker circles indicate two overlapped 
replicates. Note that only one or two replicates were available for 
some sites
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This additional evidence is consistent with the view that sample 
complexity may affect PCR success and that qPCR is more tolerant 
than cPCR to inhibitors owing to its more sensitive detection mech‐
anisms (Smith & Osborn, 2009). This observation is consistent with 
Doi et al. (2015), who studied qPCR and droplet digital PCR. It should 
be acknowledged that the master mix used in each PCR method may 
also affect detection efficiency (Jane et al., 2015) and contribute to 
detection differences. We tried to reduce inhibitors by using diluted 
eDNA extracts (Bustin et al., 2009; McKee et al., 2015), though we 
were unable to identify and quantify inhibitors of different samples 
in this study. Future studies are needed to assess impact of eDNA 
complexity (or presence of inhibitors) on detection performance 
for different PCR methods (Dingle, Sedlak, Cook, & Jerome, 2013; 
Wilson, 1997), and to explore more efficient ways to eliminate in‐
hibitors (e.g. environmental mix) without dilution as it may reduce 
target DNA to undetectable levels and cause false negatives (Buxton 
et al., 2017).

A critical concern in the application of eDNA methods to detect 
rare species is occurrence of false negatives (Ficetola et al., 2015). 
We observed a higher detection rate of qPCR than cPCR, suggest‐
ing that the former should be embraced in rare species management 
since it was more sensitive and less prone to false negatives. A num‐
ber of avenues exist to reduce false negatives including judicious 
deployment of replicates in field sampling and in the laboratory 
(Pedersen et al., 2015; Piaggio et al., 2014) and the use of highly 
sensitive PCR methods (Doi et al., 2015; Xia et al., 2018). We found 
that the false negative rate was inversely related to the number of 
replicates used per time‐point/site (Figure 4). This finding is con‐
sistent with other studies (Ficetola et al., 2015; Furlan et al., 2016) 
and highlights the importance of enhanced sampling effort to re‐
duce false negatives. In this study, one replicate was sufficient to 
demonstrate the species presence/absence in laboratory samples, 
while three replicates were required for field samples (Figure 4). We 
used three replicates as our baseline to calculate false negative rate, 
which reflected the true rate of samples from laboratory aquaria and 
channels A and C as they were detected at 100% of sites. However, 
estimation of false negative rate for samples from channel B was dif‐
ficult as both methods detected at only a single site. Given that many 
factors may cause failed detection (see Darling & Mahon, 2011), es‐
timation of false negative rate is difficult when detection rate with a 
baseline is <100%.

We found that eDNA concentration in channels A and C de‐
creased with distance from the source (Figure 1, gate A), consis‐
tent with other studies in flowing systems (Balasingham et al., 
2017; Pilliod, Goldberg, Arkle, & Waits, 2013; Shogren et al., 2017; 
Thomsen et al., 2012). Contributors to this distribution pattern in 
lotic systems include facilitated degradation (Thomsen et al., 2012), 
dilution (Balasingham et al., 2017), and particle settlement (Jane et 
al., 2015). Only one‐sample replicate was tested positive at very 
downstream sites (i.e. C7 & C8, Figures 1 and 5), indicating limited 
detection probability of our method. We observed higher concen‐
trations at sites C1–C3 than A5–A6 (Figures 1 and 5) even though 
the former sites are located downstream of the latter. Two factors 

may explain this pattern. First, water flow through gate C (Figure 1) 
may have facilitated particle resuspension, adding eDNA to the 
surface layer. Secondly, water entering channel C through gate C 
(Figure 1) was from the deeper—and possibly eDNA enriched—layer 
in channel A, than in the surface layer at sites A5–A6. Regression of 
Cq against transport distance in channel C explained less variance 
(i.e. lower R2) than in channel A (Figure 5). This is likely because 
channel C is more vulnerable to human disturbance (e.g. irriga‐
tion drainage) and has higher structural heterogeneity within the 
channel (e.g. bottom plant growth) than channel A, as the former is 
smaller and shallower. However, the declining trend of eDNA with 
flow distance was significant when channels A and C were com‐
bined (Figure 5, lower), indicating that eDNA downstream transport 
may depend on water flow and spatial scale (Deiner & Altermatt, 
2014; Shogren et al., 2017).
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