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Abstract

Metabarcoding has the potential to become a rapid, sensitive, and effective

approach for identifying species in complex environmental samples. Accurate

molecular identification of species depends on the ability to generate opera-

tional taxonomic units (OTUs) that correspond to biological species. Due to

the sometimes enormous estimates of biodiversity using this method, there is a

great need to test the efficacy of data analysis methods used to derive OTUs.

Here, we evaluate the performance of various methods for clustering length var-

iable 18S amplicons from complex samples into OTUs using a mock commu-

nity and a natural community of zooplankton species. We compare analytic

procedures consisting of a combination of (1) stringent and relaxed data filter-

ing, (2) singleton sequences included and removed, (3) three commonly used

clustering algorithms (mothur, UCLUST, and UPARSE), and (4) three methods

of treating alignment gaps when calculating sequence divergence. Depending on

the combination of methods used, the number of OTUs varied by nearly two

orders of magnitude for the mock community (60–5068 OTUs) and three

orders of magnitude for the natural community (22–22191 OTUs). The use of

relaxed filtering and the inclusion of singletons greatly inflated OTU numbers

without increasing the ability to recover species. Our results also suggest that

the method used to treat gaps when calculating sequence divergence can have a

great impact on the number of OTUs. Our findings are particularly relevant to

studies that cover taxonomically diverse species and employ markers such as

rRNA genes in which length variation is extensive.

Introduction

Metabarcoding is a rapidly growing approach that provides

promising opportunities to explore biological diversity in

great depth. The technique combines taxonomic identifica-

tion via DNA barcoding (Hebert et al. 2003) with the

application of high-throughput sequencing technology to

identify multiple taxa in complex biological assemblages.

Identifying the community composition of an environmen-

tal sample (e.g., Fig. 1) or eDNA forms the basis of under-

standing for many ecological processes and ecosystem

management regimes (e.g., Fonseca et al. 2010; Pawlowski

et al. 2014), with applications including diet assessment

and community response to toxic conditions (e.g., Pomp-

anon et al. 2012; Chariton et al. 2014). However, data pro-

cessing for a metabarcoding study can be a daunting task

for ecologists who wish to identify the species present in a

sample, and even for bioinformaticians trying to validate

their methods (McPherson 2009). In order to estimate spe-

cies diversity in a complex sample, sequences are clustered

into operational taxonomic units (OTUs), which are used

as a proxy for species. Diversity estimates can vary greatly

depending on the methods used (Bachy et al. 2013; Egge

et al. 2013), and therefore, robust assessments of various

methods are valuable to guide the selection of optimal pro-

cedures for a particular study.
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Several components of sequence data processing can

strongly impact the results of a metabarcoding study.

Firstly, the filtering of raw sequence reads is important

for the removal of sequences potentially containing errors.

A second important factor is whether unique sequences

that are represented by only a single read, known as sin-

gletons, should be included or removed in the analysis.

The choice of the clustering algorithm that groups

sequences to generate OTUs is also a very important

component. Finally, a rather neglected factor is the “iden-

tity definition”, which considers how alignment gaps are

treated when calculating sequence divergence. This clus-

tering parameter is particularly important when analyzing

markers that show extensive length variation and evolve

with frequent insertions and deletions.

Filtering

Several filtering algorithms have been developed to

remove low quality, erroneous, or artefactual sequences

such as chimeric sequences formed during PCR (e.g.

RDP, Cole et al. 2009; USEARCH, Edgar 2010; SeqTrim,

Falgueras et al. 2010; CANGS, Pandey et al. 2010; PyroC-

leaner, Mariette et al. 2011; AmpliconNoise Quince et al.

2011). Despite constant improvement of these methods,

insufficient removal of such artefactual sequences in bio-

diversity studies has likely caused considerable inflation of

some diversity estimates (Kunin et al. 2010). Several stud-

ies that applied metabarcoding have reported a much

higher diversity of species than expected based on tradi-

tional sampling and morphological identification – con-

tributing to the observation of the so-called rare

biosphere consisting of many low abundance species. Fur-

ther verification has shown that some of these estimates

are likely not representative of legitimate biodiversity, but

rather reflect artifact generated as a consequence of

amplification and sequencing errors combined with inad-

equate data processing procedures (Kunin et al. 2010; Be-

hnke et al. 2011; Bachy et al. 2013). However, the extent

to which metabarcoding methods are prone to generating

highly inflated biodiversity estimates remains largely

unexplored. Another contentious issue is the removal of

singletons to reduce the impact of spurious errors (Kunin

et al. 2010; Behnke et al. 2011), although some authors

argue that singletons may be important for the detection

of rare species in a sample (Zhan et al. 2013).

Clustering

After filtering, sequences are generally clustered into

OTUs, sometimes referred to as “OTU-picking”. This step

groups similar sequences to account for minor differences

between reads stemming from biological variation (e.g.,

polymorphism in sequences from individuals of the same

species, or between gene copies within an individual) and

from PCR or sequencing errors. Numerous clustering

programs that apply different algorithms have been devel-

oped (Table 1). Most de novo clustering algorithms

(without the use of reference sequences known a priori)

use a hierarchical or greedy heuristic approach (Sun et al.

2012), although a few new developments use alternative

statistical or modularity-based approaches (e.g., CROP,

M-Pick, SWARM, Table 1). In general, hierarchical algo-

Table 1. List of different clustering algorithms (not exhaustive). Iden-

tity definitions: no gaps = gaps are not included in the identity calcu-

lation; one gap = a gap of any size is treated as a single mutational

difference; each gap = each nucleotide in the gap is treated as an

additional mutational difference.

Algorithm name Algorithm type

Identity definition(s)

used/available

mothur

(Schloss et al. 2009)

Hierarchical Default is one gap;

other options include

each gap and

no gaps

UCLUST

(Edgar 2010)

Greedy heuristic Each gap definition is

used in most recent

version. Older

versions: other

definitions including

one gap and a

definition similar to

no gaps.

UPARSE

(Edgar 2013)

Greedy heuristic Each gap definition

used; user cannot

change

CD-HIT

(Li and Godzik 2006)

Greedy heuristic Gaps penalized only

in longer sequence

of pairwise

comparison; user

cannot change

ESPRIT

(Sun et al. 2009)

Hierarchical One gap; user

cannot change

ESPRIT-Tree

(Cai and Sun 2011)

Hierarchical but

pairwise

comparisons are

not exhaustive

Each gap; user

cannot change

CROP

(Hao et al. 2011)

Bayesian approach One gap; user

cannot change

TSC

(Jiang et al. 2012)

Step 1: hierarchical

2: greedy heuristic

Directly from

alignment algorithm;

user cannot change

M-pick

(Wang et al. 2013)

Modularity based One gap; user

cannot change

MSClust

(Chen et al. 2013b)

Greedy heuristic Directly from

alignment algorithm;

user cannot change

SWARM

(Mah�e et al. 2014)

Agglomerative One gap
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rithms compute sequence divergence between all pairs of

sequences – which is very computationally demanding –
producing a distance matrix before generating OTU clus-

ters. Greedy heuristic algorithms perform fewer pairwise

comparisons to estimate optimal clustering parameters,

improving computational efficiency (Sun et al. 2012). In

this study, we compare three commonly used algorithms

representing the two major types of clustering options;

hierarchical clustering algorithm mothur and greedy heu-

ristic algorithms UCLUST and UPARSE. We also chose

these because they have clear documentation available

and have adjustable parameters, allowing us to test differ-

ent identity definitions.

Different clustering methods can lead to extensively dif-

ferent biodiversity estimates (Bachy et al. 2013). These

methods vary in user-friendliness, accuracy, computa-

tional speed, and memory usage, and their suitability for

a particular study can depend on the target taxa, markers,

type of samples, sequencing methods, and goals of analy-

ses. This makes choosing an appropriate clustering

method challenging, especially in the absence of compre-

hensive performance tests and robust biodiversity cen-

suses of the given samples.

Identity definitions

An important factor to consider when clustering

sequences is the identity definition, which is used in the

calculation of divergence between sequences during OTU

assignment. This parameter is especially important for

clustering nonprotein coding markers such as variable

regions of ribosomal RNA genes that evolve with frequent

insertions and deletions (indels) (Wuyts et al. 2000; Eng-

lisch et al. 2003) and whose length can vary between taxa

by hundreds of nucleotides (Crease and Taylor 1998;

Choe et al. 1999). In addition to the presence of a wide

spectrum of evolutionary informative gaps, artificial gaps

can be introduced by homopolymer misreads, a common

type of error in sequencing data, specifically with pyrose-

quencing (Huse et al. 2007). Although this artifact may

be less prevalent with other high-throughput sequencing

platforms, pyrosequencing remains highly used for the

generation of long reads that span variable regions of the

18S gene. Markers that exhibit significant length variation

have specific computational requirements. Indels cause

gaps in the sequence alignment, and how these gaps are

scored greatly affects the calculated divergence between

sequences. The computational aspects related to handling

gaps have largely been overlooked by the metabarcoding

community, despite the common use of ribosomal mark-

ers in metabarcoding studies (Fonseca et al. 2010; Paw-

lowski et al. 2014). The effect of using different identity

definitions on diversity estimates has only been investi-

gated on prokaryotic 16S sequences (Schloss 2010). This

study found that length variation in the markers had an

impact on sequence divergence calculations, but the effect

of different gap treatments did not greatly impact diver-

sity estimates (Schloss 2010). However, this potential

problem has not been evaluated on complex eukaryotic

communities or on markers with extensive length varia-

tion such as 18S. Thorough investigations on the effect of

gap treatment on biodiversity estimates are largely pre-

cluded by technical limitations. It is typically not obvious

how different clustering algorithms treat gaps or missing

data. Most importantly, different algorithms have differ-

ent default settings for the treatment of gaps, which may

or may not be changeable by the user, making direct

comparisons of algorithms challenging (Table 1).

There are typically a few identity definitions that can

be implemented in clustering algorithms. Gaps can be

excluded from the calculation altogether, a gap of any

length can be treated as a single mutational difference, or

each nucleotide in a gap can be treated as a separate

mutational difference (Schloss 2010). The treatment of

gaps should reflect the molecular evolution of the marker

as the objective is to distinguish species based on

sequence differences. Gap treatment is therefore very

important when clustering sequences that contain many

or large indels.

Comparing workflows

The few studies that compare workflows – defined here as

the combination of data processing procedures that result

in OTUs – and specifically the use of different clustering

methods (Table 2) provide conflicting results that can

leave researchers overwhelmed with their decision on how

to process metabarcoding data. Most verification tests

have been carried out with prokaryotic sequences from

mock datasets (simulated sequences or sequences from a

database), mock communities (sequenced DNA from

known species), or natural communities (for which the

ground truth composition is difficult to estimate) (Bachy

et al. 2013; Chen et al. 2013a; Wang et al. 2013). The

OTU number generated has often been used as a proxy

for the accuracy of the workflow and the workflows that

produce the least overestimation of diversity are assumed

to be the best. Other studies have compared the quality

of OTUs produced from different workflows, but have

not related OTUs to taxonomy (Edgar 2013; Table 2).

This can be problematic even if an accurate ground truth

is known because it is possible that multiple OTUs will

be generated for some taxa simply due to biological varia-

tion, while other taxa are completely missed (e.g., not

amplified or removed during data processing). Although

clustering methods have been compared on a eukaryotic
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Table 2. Previous studies that have compared clustering methods (not exhaustive).

Reference Relevant methods compared Marker(s) and data used Performance measure(s) Conclusions

Barriuso et al. (2011) mothur, ESPRIT, CROP,

UCLUST, RDP clustering

16S sequences

Synthetic and natural

community data

OTU number compared

to expected

RDP, ESPRIT, UCLUST produced

acceptable results, CROP

produced anomalous results

mothur unable to process large

datasets

Sun et al. (2012) MSA vs. PSA1; hierarchical

vs. greedy heuristic

clustering

CD-HIT, UCLUST, ESPRIT,

MUSCLE, ESPRIT-Tree

16S sequences

Simulation and natural

community data

OTU number

NMI2 and F-score2
Although PSA does not consider

secondary structure like MSA

can, PSA still produced more

reliable estimates with 16S

sequences

Hierarchical clustering

algorithms performed better

Edgar (2013) UPARSE, AmpliconNoise3,

mothur, QIIME4

(implementing UCLUST)

16S sequences

Two mock communities

and natural community

data

OTU number

Classified OTUs as

perfect, good, noisy,

chimeric

UPARSE performed best: most

perfect and good sequences

and fewest chimeric sequences

UPARSE OTUs approached 1:1

correspondence with species in

mock community

Chen et al. (2013b) ESPRIT, ESPRIT-Tree, mothur,

muscle+mothur, CROP, CD-

HIT, UCLUST, SLP5,

DNAClust6, GramCluster7

Dataset of 16S sequences

of known microbial

species

Simulated 16S datasets

NID2 score

OTU number compared

to expected

With default parameters, the

methods tended to inaccurately

estimate number of OTUs

Bachy et al. (2013) MSA+mothur,

AmpliconNoise, USEARCH

workflow, CD-HIT-OTU

18S and ITS sequences

from a mock community

of protist morphotypes

OTU number compared

to expected from

morphology and map to

reference dataset

Great differences in OTU

number, some methods

overestimating by an order of

magnitude

Denoising methods tended to

underestimate some of the

species richness.

Yang et al. (2013) USEARCH+CROP,

Denoiser+UCLUST,

OCTUPUS8

18S and CO1 sequences

Natural community data

OTU number Pipelines produced similar results

for community composition

OCTUPUS appeared to inflate

diversity

Bonder et al. (2012) Filtering: none, chimera

removal, denoising,

denoising + chimera

removal

Clustering: UCLUST,

mothur, ESPRIT-Tree, CD-

HIT, QIIME

16S sequences

Mock community and

natural community

datasets

OTU number compared

to expected

NMI score

CD-HIT, UCLUST, ESPRIT-Tree

performed well

Filtering required for accurate

OTU estimates

May et al. (2014) Filtering: none, chimera

removal, denoising,

denoising then chimera

removal, chimera removal

then denoising

Clustering: 11 different

clustering algorithms were

evaluated

16S sequences

Mock community

datasets and simulated

datasets

OTU number compared

to expected

NMI score

The choice and order of filtering

options have a great impact on

clustering results

After chimera removal and

denoising, the performance of

the different clustering

algorithms was similar

1MSA – multiple sequence alignment; PSA – pairwise sequence alignment (when comparing sequences during clustering).
2Metric of cluster quality and proper assignment of sequences; generally requires a ground truth composition to determine.
3Algorithm that denoises reads before further processing (Quince et al. 2011).
4Pipeline that implements a variety of tools for data processing (Caporaso et al. 2010).
5Single linkage preclustering; a method that attempts to reduce noise to minimize OTU estimate inflation (Huse et al. 2010).
6Greedy heuristic algorithm (Ghodsi et al. 2011).
7Greedy heuristic algorithm based on a grammar distance metric (Russell et al. 2010).
8Fonseca et al. (2010).
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community with known diversity (Bachy et al. 2013;

Table 2), the community examined had limited taxo-

nomic breadth (a single order), and not all parameters

were explored. As environmental samples can be com-

posed of highly divergent taxa, the efficacy of clustering

methods is better assessed using a diverse mock commu-

nity consisting of a wide range of taxonomic groups. In

this way, the most suitable workflow to reduce both over-

splitting (i.e., producing multiple OTUs representing the

same species) and undersplitting OTUs (i.e., closely

related species being placed in the same OTU because of

insufficient taxonomic resolution) can be evaluated.

In the present study, we focus on metabarcoding zoo-

plankton using the hypervariable V4 region of the 18S

rRNA gene, a region prone to expansion and contraction

via slippage mutations and characterized by great length

variation across eukaryotic taxa (Hancock 1995; Hwang

et al. 2000). For example, between the families Artemiidae

and Daphniidae (both branchiopod crustaceans), the

length of the V4 region differs by up to 237 nucleotides

(Crease and Taylor 1998). We use a mock community

with morphologically identified zooplankton species and

perform downstream taxonomic classification of OTUs to

assess the accuracy of different workflows in estimating

biodiversity. Furthermore, we use a natural zooplankton

community to explore the range of OTU numbers pro-

duced by the various workflows. We evaluate workflows

consisting of stringent and relaxed filtering, each with sin-

gletons included and removed – producing four datasets

for both the mock and natural community. We then clus-

ter each of these datasets using mothur, UCLUST, and

UPARSE algorithms. At the clustering stage we also test

three different identity definitions in order to evaluate the

effect of gap treatment on the overall efficacy of species

identification.

Materials and Methods

Mock community assembly

The mock community included 61 zooplankton species

from broad taxonomic groups encompassing three

eukaryotic phyla: Arthropoda (subphylum Crustacea, 51

species), Chordata (subphylum Tunicata, two species),

and Mollusca (eight species). The crustaceans, making up

a majority of the community belonged to six major

groups: Amphipoda, Anostraca, Cirripedia, Cladocera,

Copepoda (calanoids, cyclopoids, harpacticoids), and

Decapoda, (Table S1). Each species in the community

was represented by a single individual, which was dis-

sected to roughly equal volume corresponding to a med-

ium size cladoceran. All individuals included were

identified either to species or genus level by taxonomists,

with eight exceptions that were identified to family level

(e.g., decapod larvae, Table S1). We ensured that these

specimens were genetically diverged from other commu-

nity members so that they could be unambiguously iden-

tified (Table S2). All individuals were washed with

distilled water prior to inclusion in the community. Due

to the relatively large number of individuals involved, the

community was assembled in four separate microcentri-

fuge tubes, each containing approximately 15 individuals.

Following assembly, any fluid remaining from the wash-

ing process was removed by centrifugation at 6797 g for

3 min and extraction of the supernatant was performed

with a fine pipette. The supernatant was subsequently

examined under the microscope to ensure that no tissue

or animals were removed during the concentration pro-

cess.

DNA extraction, PCR amplification, and
pyrosequencing

Total genomic DNA was isolated independently from the

tissue in the four tubes using DNeasy Blood and Tissue

Kits (Qiagen , Venlo, Limburg, Netherlands) following

the manufacturer’s protocol. The primer pair developed

by Zhan et al. (2013) (Uni18S: AGGGCAAKYCTGGTGC-

CAGC; Uni18SR: GRCGGTATCTRATCGYCTT) was used

to amplify approximately 400–600 bp of the hypervariable

V4 region of the 18S rRNA gene. Preliminary testing with

single species extraction and amplification confirmed that

all of the taxonomic groups included in the community

could be amplified by this primer set. The 454 FLX

adapters (adapter A: CCATCTCATCCCTGCGTGTCTCC

GACTCAG, adaptor B: CCTATCCCCTGTGTGCCTTGG

CAGTCTCAG) were added to the 50 end of the forward

and reverse primers, respectively, to make them compati-

ble with pyrosequencing procedures. Eight replicate PCR
Figure 1. A natural zooplankton community sampled from Sudbury,

Ontario, Canada.
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mixtures (25 lL each) were prepared for each of the four

independent extractions in an attempt to reduce the effect

of PCR biases that may have occurred in any given reac-

tion. Each reaction consisted of approximately 100 ng of

genomic DNA, 19 PCR buffer, 2 mmol/L of Mg2+,

0.2 mmol/L of dNTPs, 0.4 lmol/L of each primer, and 2

units of Taq polymerase (Genscript, Piscataway, NJ,

USA). PCR cycling parameters consisted of an initial

denaturation step at 95°C for 5 min, followed by 25

amplification cycles of 95°C for 30 sec, 50°C for 30 sec,

72°C for 90 sec, and a final elongation step at 72°C for

10 min. All PCR products were cleaned to remove short

products using Solid Phase Reversible Immobilisation

(SPRI) paramagnetic bead-based method (ChargeSwitch,

Invitrogen, Carlsbad, CA, USA). The quality and quantity

of DNA was assessed using gel electrophoresis and

Quant-iT PicoGreen dsDNA Assay kit (Invitrogen). All

cleaned PCR products (32 total) were then pooled

together in equimolar concentrations before pyrosequenc-

ing at ½ PicoTiter plate scale. Pyrosequencing was per-

formed using 454 FLX Adapter A on a GS-FLX Titanium

platform (454 Life Sciences, Branford, CT, USA) by Gen-

ome Quebec. Pyrosequencing remains the most accessible

technology able to sequence the read lengths necessary to

provide species diagnosis with this marker. Data were

deposited in the Sequence Read Archive (SRA, http://

www.ncbi.nlm.nih.gov/sra) under Accession Number

SRX884895.

Natural community

We also applied our workflows on natural community

sequence data (SRA Accession Number SRX889243) gen-

erated by Zhan et al. (2013) from a zooplankton sample

collected from Hamilton Harbour, Ontario, Canada. Pro-

cedures prior to sequencing (DNA extractions, PCRs,

etc.) were similar to those described for the mock com-

munity. Moreover, all analytical procedures were the same

as those used for the mock community.

Data filtering

In order to assess the outcome of including more reads at

the cost of potentially retaining more artifacts, we filtered

raw sequence data using either a stringent or relaxed pro-

cedure (Table 3). The stringent procedure was imple-

mented in USEARCH (Edgar 2013). The relaxed

procedure was implemented through RDP pyrosequenc-

ing pipeline (https://pyro.cme.msu.edu/index.jsp), a user-

friendly platform, applying the filtering method used by

Zhan et al. (2013). An important difference between the

stringent and relaxed filtering procedures is the way in

which sequences were trimmed – our stringent filtering

procedure trimmed all sequences to 400 bp (sequence

quality dropped beyond this length) and removed

sequences of length <400 bp, while our relaxed filtering

procedure retained reads of variable length (ranging from

250 to 600 bp). The type of quality filtering also differed

– our stringent method used the maximum expected

error as a threshold for removing low-quality sequences,

whereas our relaxed procedure used average quality scores

as a filtering criterion. It has been argued that using aver-

age quality scores results in a higher chance of retaining

sequences with true errors (Edgar 2013).

Denoising is another quality control method that clus-

ters the raw flowgrams that give intensities (homopoly-

mer length) of the reads, before converting to nucleotide

sequences in an attempt to reduce homopolymer read

errors (Quince et al. 2009). However, with large datasets,

denoising requires extensive computational memory and

is not always feasible except with large computer clusters.

Therefore, we decided to test the two filtering methods

described above, which are practical for most independent

researchers.

After initial filtering in USEARCH or RDP, identical

reads were dereplicated using USEARCH (Fig. 2), a pro-

cess in which identical reads are collapsed to a single read

for more efficient clustering. In order to test if singletons

can provide relevant information or whether they only

add noise, datasets were analyzed both with and without

singletons. Therefore, four sequence datasets for each the

mock community and the natural community were gener-

ated for subsequent analysis: one filtered by RDP and one

filtered by USEARCH, each with and without singletons.

Chimeras were removed using UCHIME (Edgar et al.

2011) for all datasets before clustering, except for the

datasets clustered with UPARSE, where chimera removal

occurs simultaneously with OTU-picking and a final chi-

Table 3. Main characteristics of stringent and relaxed filtering proce-

dures.

Stringent filtering

(USEARCH) Relaxed filtering (RDP)

Primer mismatches

removed

Primer mismatches removed

Sequences <400 bp removed

and remaining sequences

trimmed to 400 bp

Sequences <250 bp or >600 bp

removed

Sequences containing

ambiguous nucleotides

(Ns) removed

Sequences containing ambiguous

nucleotides (Ns) removed

Sequences with expected

error >0.5 removed

Sequences with average

quality <20 removed

Chimeras removed with

UCHIME1
Chimeras removed with UCHIME1

1Except for datasets clustered with UPARSE.
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mera check with UCHIME is performed after clustering

(Fig. 2).

Clustering

We chose to test the performance of three commonly

used clustering algorithms: mothur, which performs hier-

archical clustering, as well as UCLUST and UPARSE,

which perform greedy heuristic clustering. Mothur takes

as input a multiple sequence alignment and generates

clusters after building a distance matrix of all pairwise

comparisons of sequences (Schloss et al. 2009). We per-

formed multiple sequence alignments with default settings

in MAFFT v7.150b (Katoh and Standley 2013) before

inputting the alignments into mothur, as per Bachy et al.

(2013). UCLUST takes as input sequences in order of

decreasing abundance, with the assumption that more

abundant sequences are more likely to represent genuine

sequences as opposed to artifacts (Sun et al. 2012; Edgar

2013). The most abundant sequence becomes the founder

of the first cluster, and each subsequent sequence is com-

pared in a pairwise manner, either joining an existing

cluster or becoming the founder of a new cluster if it is

not similar enough to the founder sequence of the exist-

ing clusters. UPARSE functions in a similar way as UC-

LUST except that a maximum parsimony score is

calculated when comparing pairs of sequences (Edgar

2013). This score is used both to determine whether or

not the sequence should join the query cluster and to

determine whether it is chimeric.

Identity definitions

Because mothur and earlier versions of UCLUST allow

the user to select the identity definition to calculate

sequence divergence, we used these two algorithms to test

the effects of different identity definitions on the results

of OTU-picking. We adopt the terminology used for mo-

thur and refer to the definitions as no gaps when gaps in

the alignment are excluded from the calculation, one gap

when a gap of any length is treated as a single mutational

difference, and each gap when each nucleotide in a gap is

treated as a separate mutational difference. In UCLUST,

we used the CD-HIT definition for no gaps, MBL for one

gap, and All-diffs for each gap. USEARCH v.5.2 was used

for the implementation of UCLUST because this version

Raw data (Mock community and natural community) 

UPARSE filtering RDP filtering 

Dereplicate

Abundance sort 

Include singletons Remove singletons 

Chimera 
removal 

MSA (MAFFT) 

UPARSE UCLUST Mothur

Chimera 
removal 

No gaps No gaps One gap One gap Each gap Each gap Each gap 

Filtering 

Singletons 

Clustering 

Sequence 
divergence  
calculation 

BLAST against reference database 

Taxonomy 
analysis Figure 2. Data analysis methods. MSA refers

to multiple sequence alignment.
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allows the user to change the identity definition and more

recent versions do not. UPARSE does not allow the user

to change the identity definition, so only the default of

each gap was used. All datasets were clustered at a 3%

divergence threshold with each of the three clustering

algorithms. The RDP-filtered datasets including singletons

were not clustered with mothur because these datasets

retained a large number of sequences (169,807 for the

mock community and 130,433 for the natural commu-

nity), and it was not possible to compute a matrix of

pairwise differences due to computational memory

requirements. We initially evaluated OTU numbers for

each workflow using 3%, 4%, and 5% divergence thresh-

olds, but only report results for 3%. Our preliminary test

indicated that OTU number differences between work-

flows were greater than that between divergence thresh-

olds. Testing the appropriateness of different divergence

thresholds for clustering a complex zooplankton commu-

nity is thoroughly addressed in the companion paper

Brown et al. using a series of complex mock communities

that include various levels of genetic variation (interspe-

cific, intrapopulation, and intra-individual).

Taxonomic classification

In order to compare methods in a consistent fashion,

OTUs from the mock community datasets were classified

using a reference BLAST database (Altschul et al. 1990) of

18S sequences, which was constructed with sequences

from the nucleotide database from NCBI and the SILVA

database (Quast et al. 2013). For the mock community

species that were not in one of these databases, the most

closely related species (some of which were only in the

same family) was designated as a reference sequence if it

was diverged from the other reference sequences in the

community (beyond the divergence threshold used).

Therefore, all 61 species had a reference sequence

included in our database. All downloaded reference

sequences were aligned (MAFFT v7.150b) and trimmed

around the V4 region to produce our reference BLAST

database against which we compared OTUs. We identified

the species from our community that were putatively suc-

cessfully amplified by performing BLAST searches using

all unfiltered reads against our reference database. We

were able to unambiguously recover 46 community speci-

mens, whereas 15 were absent from our data. We

removed from the analysis three species that could not be

distinguished by our 3% divergence threshold (Table S3),

leaving us with 43 reference sequences. This ensured that

our analysis only took into account those species from

the community that were actually amplified. After each

workflow was performed, the representative OTU

sequences were taxonomically classified based on their

best BLAST hit against the reference database. A positive

identification consisted of a BLAST hit with at least 90%

identity and an alignment length of at least 200 nucleo-

tides with a reference database sequence. These parame-

ters were relatively relaxed to accommodate congeneric or

confamilial reference sequences, but were checked to

ensure the identity matched the expectation based on the

relatedness of the corresponding reference sequence

(Table S2).

To compare the accuracy in estimating biodiversity in

the mock community, the proportion of species recovered

was assessed for each workflow, which was used to calcu-

late a “precision” score. Precision was calculated as the

number of species recovered from the reference database

divided by the total number of OTUs generated. A preci-

sion score of 1.0 would signify that all OTUs correctly

corresponded to the species included in the mock com-

munity, with no extra OTUs. A low precision would sig-

nify the presence of many spurious OTUs and could

result from artefactual sequences (producing nontarget

OTUs), and/or from multiple OTUs being generated for

the same species (oversplitting). For example, if a work-

flow recovered 40 species from the database but produced

70 OTUs, the precision would be 40/70 (0.57). To rigor-

ously compare the three identity definitions, precision

was also calculated for each of the 10 higher level taxo-

nomic groups included in the mock community using

datasets clustered by mothur.

Results and Discussion

Stringent or relaxed filtering?

OTU numbers varied by orders of magnitude depend-

ing on the combination of data filtering and clustering

methods used (Table 4). For the mock community, the

most stringent workflow (USEARCH filtering, singletons

removed, UPARSE clustering) recovered 60 OTUs

whereas the most relaxed combination (RDP filtering,

singletons included, UCLUST clustering with each gap

identity definition) recovered 5068 OTUs. When single-

tons were removed, however, stringent and relaxed fil-

tering workflows produced more comparable results

ranging from 60 to 263 OTUs (Table 4). The largest

differences came from the RDP-filtered datasets that

were clustered with mothur and UCLUST using

the each gap identity definition. This workflow recov-

ered the highest OTU numbers (262 and 263 OTUs,

respectively) due to the combination of RDP filtering,

which does not trim sequences to a uniform length,

and the each gap definition, in which each nucleotide

in a gap contributes to sequence divergence during

clustering.
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Despite the variation in OTU numbers retrieved from

the various workflows, the actual number of target

species recovered did not differ greatly, ranging between

40 and 42 of a possible 43 (Table 4). None of the work-

flows tested recovered all 43 species, but all 43 species

were recovered by at least one workflow. However, strin-

gent filtering consistently had higher precision (Fig. 3A)

whereas relaxed filtering repeatedly formed multiple OTU

clusters matching the same species – suggesting oversplit-

ting of clusters – as well as more OTUs that did not

match species from the mock community. Generating

more OTUs that represent the same species reflects

increased sequence variation either produced by genuine

biological variation or sequencing artifacts. Most of the

OTUs that did not match reference sequences represent

artifacts with no BLAST hits, contaminants that match

other zooplankton species, or ambiguous “uncultured

eukaryote” sequences. Contaminant species (e.g., an
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Figure 3. Species detection and precision across workflows. Species

detection is the ratio of the number of species recovered and the

number of species in the mock community database, whereas

precision is the ratio of the number of species recovered and the

number of OTUs. (A) The combination of relaxed (RDP) and stringent

(USEARCH) filtering methods with clustering algorithms. Results

shown for the mock community dataset with singletons removed, and

each gap identity definition was used for all clustering algorithms. (B)

The combination of removing singletons (� singletons) and including

singletons (+ singletons) with all clustering algorithms. Results shown

for the mock community dataset filtered with USEARCH and

clustering with each gap identity definition.
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annelid) that were not targeted by our primers were

more often detected with relaxed filtering compared to

stringent. We found differences in the recovery of five

mock community species when comparing relaxed and

stringent filtering (Fig. 4), with relaxed filtering having

only a slightly higher proportion of species recovered

(Fig. 3A). Stringent filtering consistently produced OTU

numbers closer to the number of species in the commu-

nity than relaxed filtering. Additionally, OTU number

was less impacted (inflated) by the inclusion of singletons

with stringent filtering (Table 4). Therefore, we highly

recommend the use of stringent filtering when metabar-

coding approaches are used to generate accurate biodi-

versity estimates. We found that stringent filtering

reduces redundancy and noise and reduces the problem

of generating inflated numbers of OTUs, without consid-

erably decreasing the number of species that could be

recovered.

Include or remove singletons?

In the workflows that included singletons, relaxed filtering

had a much greater number of singleton reads (108,663)

compared to stringent filtering (13,241). Including single-

tons with relaxed filtering also resulted in very high OTU

numbers (Table 4). However, including singletons in the

mock community generally did not increase the propor-

tion of species detected (Fig. 3B). Instead, we found that

including singletons mainly increased the number of

OTUs representing the same species that were already

detected when singletons were not included, decreasing

precision. This suggests that most singletons are either

rare alleles or the products of artifacts or sequencing

errors, in agreement with past findings (Tedersoo et al.

2010). In other words, low-quality sequences that con-

tained errors but originated from the same species (same

individual) were clustered into different OTUs because

they contained sufficient differences beyond the diver-

gence threshold. Datasets with singletons also generated

more OTUs that did not match a target species (e.g., 15

vs. six for the USEARCH filtering and UPARSE clustering

workflows).

Including singletons did allow for the recovery of two

species (Ciona intestinalis and Chthamalus dalli) that were

not recovered when singletons were removed after

USEARCH filtering. These species were only represented

by a single read, probably due to inefficient amplification

despite doing multiple independent PCRs. In general,

however, the retention of singletons had a higher impact

on decreasing precision (more OTUs) than it did on

increasing species detection. Depending on the type of

study and the research goal, the trade-off between gener-

ating accurate OTU numbers and retaining the ability to

detect genuine rare species needs to be evaluated. It is

important to keep in mind that our mock community

had only one individual per species and included approxi-

mately the same volume of tissue for each individual. Sin-

gletons therefore may be more important in a situation

where some species are present at a much lower abun-

dance than others. With the increased read depth of other

platforms (e.g., Illumina), singletons are even more likely

to be artifacts and may be more readily discarded for bio-

diversity assays (Edgar 2013).

Clustering algorithms

We tested the hierarchical clustering algorithm mothur

and greedy heuristic algorithms UCLUST and UPARSE.

In general, mothur produced results comparable to UC-

LUST both in terms of OTU number and precision

within the same workflow (Table 4, Fig. 3). Hierarchical

clustering with mothur requires a multiple sequence

alignment and pairwise distance matrix calculation before

clustering, which takes much more time and computa-

tional resources than the greedy heuristic algorithms UC-

LUST and UPARSE. Clustering with mothur took hours

for most datasets, compared to seconds for UCLUST and

minutes for UPARSE. Previous work has shown that hier-

archical clustering produced better results for bacterial

16S sequences (Sun et al. 2012), but our study shows

greedy heuristic clustering to be comparable when both

methods start from the same set of filtered 18S sequences.

Therefore, greedy heuristic clustering may be sufficiently

accurate for a eukaryotic metabarcoding study. However,

using a multiple sequence alignment with a reference

database and with a model that takes secondary structure

of the rRNA molecule into consideration may produce

more accurate results with mothur (Schloss 2010). These

steps are widely practiced for bacterial 16S sequences and

Figure 4. Species detected unique to the particular filtering method.

Stringent (USEARCH) versus relaxed (RDP) filtering – both with

singletons removed and clustered with UPARSE. The size of the circle

corresponds with the number of species recovered.
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may be possible for eukaryotic groups with sequence

information, but this would still not overcome the

drawback of relying on a high-quality multiple sequence

alignment of sequences of a highly polymorphic marker

to calculate sequence divergence (Goeker et al. 2010).

There were no differences in species detection between

the three clustering algorithms in datasets generated with

stringent filtering, with or without singletons. UPARSE

gave the highest precision and OTU number closest to

species number than the other clustering algorithms, even

in workflows with relaxed filtering and including single-

tons (Fig. 3). For these reasons, we recommend the use

of UPARSE for clustering.

Identity definitions

We tested three methods for calculating sequence diver-

gence during clustering; no gaps, one gap, and each gap

identity definitions. The each gap definition tended to

produce the most OTUs, no gaps the least, and one gap

intermediate (Table 4). Each gap produced much higher

OTU numbers than the other definitions especially under

relaxed filtering (e.g., 262 for mothur with each gap vs. 70

and 75 for no gaps and one gap, respectively). Precision

also followed a similar pattern: highest for no gaps, lowest

for each gap, and intermediate for one gap, with differ-

ences most pronounced with relaxed filtering (Fig. 5).

There were greater differences between definitions when

singletons were included (Table 4), likely because single-

tons are more likely to represent erroneous sequences

(Edgar 2013) that could contain artificial indels.

The each gap definition produced inflated OTU num-

bers because terminal gaps are included in the calculation

of sequence divergence with the algorithms we used. Ter-

minal gaps are created in an alignment after stringent fil-

tering (all sequences trimmed to 400 bp) when sequences

contain internal indels, and also for relaxed filtering when

sequences are different lengths. This often resulted in the

formation of separate OTUs for sequences that are other-

wise similar but differ in aligned length. This is the reason

why the UPARSE manual clearly urges the user to input

globally alignable sequences without terminal gaps. How-

ever, with the large quantity of data produced in meta-

barcoding studies, it is generally not practical to

accurately align all sequence reads before trimming. In

comparing each of the identity definitions when

sequences were clustered with UCLUST after RDP filter-

ing, each gap produced more OTUs that differed mainly

in length. Therefore, no gaps and one gap allow similar

sequences that differ primarily in length to be clustered

together, whereas each gap produces multiple clusters

containing similar sequences that differ only in length.

Differences between identity definitions were more subtle

with stringent filtering (Fig. 5A), probably attributed to

the fact that all sequences are trimmed to 400 bp, so less

extensive terminal gaps are created. Clearly, terminal gaps

created in alignments of length variable markers represent

a theoretical problem in calculating sequence divergence

as terminal gaps should represent missing information

and not evolutionary differences. This problem is ampli-

fied with the use of each gap. The one gap definition

reduces the impact of terminal gaps as every nucleotide is

not counted as a difference. Although UPARSE uses the

each gap definition, this clustering algorithm still had high

precision and did not overestimate OTU number as much

as the other clustering algorithms did using each gap.

Another problem related to identity definitions is that

of oversplitting versus undersplitting. OTUs may be

oversplit with each gap because ribosomal markers are

present in multiple gene copies (Bik et al. 2012) and in-

tragenomic length variation between gene copies is com-

mon (McTaggart and Crease 2005; James et al. 2009).

For example, under relaxed filtering and clustering with
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Figure 5. Precision comparisons of methods of calculating sequence

divergence. Precision is the ratio of the number of species recovered

and the number of OTUs. (A) USEARCH filtered data with singletons

removed and clustered by mothur with all identity definitions. (B) RDP

filtered data with singletons removed and clustered by mothur with

all identity definitions.
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mothur, six OTUs were produced for Centropages ab-

dominalis with each gap, where a single OTU was

produced for this species with no gaps and one gap.

Using each gap contributes to oversplitting of OTUs and

is probably less appropriate because a multinucleotide

indel likely represents a single evolutionary event. Con-

versely, not including gaps as evolutionary differences as

with no gaps could reduce taxonomic resolution making

it difficult to distinguish closely related species. However,

in our study with the taxa we used, the exclusion of gaps

did not cause any loss of taxonomic resolution (under-

splitting did not occur with no gaps). The one gap defini-

tion is a seemingly suitable compromise between each

gap and no gaps, as it retains the useful information of

the presence of gaps (retaining taxonomic resolution)

but reduces oversplitting by treating gaps as single evolu-

tionary events.

The sequence identity definition for pairwise compari-

sons is used to assign sequences to clusters and should

reflect real differences between species. However, this

parameter is rarely explored by metabarcoding research-

ers. A theoretical basis for treating gaps in ribosomal

markers as single or multiple evolutionary events is lack-

ing (Schloss 2010), but it is highly needed in metabarcod-

ing studies. Different clustering algorithms have different

default parameters for identity definitions (Table 1),

which can greatly impact the outcome of OTU generation

as shown in this study. Our results indicate that the each

gap definition should not be used with ribosomal markers

when sequences are not all trimmed to the same length

and terminal gaps count because this can highly inflated

OTU estimates regardless of the sequencing platform

employed.

Concordance of OTUs and species

OTU number alone is not a satisfactory measure of the

ability of different workflows to recover species from the

mock community. Assigning OTUs to a taxonomic iden-

tification as we did is an effective method to detect spe-

cies actually present and to examine species richness,

facilitating a better comparison between workflows. By

identifying OTUs, we were able to distinguish those that

did not correspond to a species included in the mock

community or those that represented variants of the same

species. This is reflected in the precision of the various

workflows (number of mock community species actually

recovered divided by the total number of OTUs pro-

duced), which varied between <0.01 and 0.67. The OTUs

that did not correspond to species in the mock commu-

nity were due to either contamination (including gut con-

tents and parasites) or sequencing artifacts. For example,

a Platyhelminthes species was consistently recovered by all

workflows even though it was not intentionally included in

the mock community, and an algal species was recovered

when singletons were retained. Also, multiple OTUs often

matched the same species, which could be due to poly-

morphism between gene copies within an individual. For

example the Corbicula fluminea individual consistently

produced multiple OTUs across different workflows. Ide-

ally, clustering would group these sequence variants into

a single OTU, but sometimes this does not occur due to

extensive variation. Some taxonomic groups were consis-

tently overestimated based on OTU numbers (e.g., cla-

docerans and molluscs), while others were consistently

underestimated (e.g., harpacticoid copepods). Some spe-

cies were not recovered because they failed to amplify.

Clustering at a lower divergence threshold (1%) allowed

for the recovery of three more species that were placed in

a cluster with a closely related species when the diver-

gence threshold was set to 3% (Table S3), indicating un-

dersplitting with 3%. This reflects a limitation of

metabarcoding and the OTU approach in distinguishing

some closely related species. Even with mock communi-

ties, there is the possibility of bias in DNA extraction and

PCR amplification, which can cause missing sequence

information for some species or skew the relative read

abundance of others. Despite these caveats, mock com-

munities provide insight into how to evaluate natural

samples.

Natural community

The OTU numbers produced from the natural zooplank-

ton community largely mirrored the patterns of the OTU

numbers recovered from the mock community for the

different workflows (Table 4). The most stringent work-

flow recovered 22 OTUs, while the most relaxed work-

flow recovered 22,191 OTUs. In this case including

singletons caused an increase in OTU number by up to

two orders of magnitude compared to the same work-

flow with singletons removed. This is an even greater dif-

ference than what we found for the mock community,

probably due to variable species abundances and com-

munity complexity, in addition to potential differences in

sequence quality and read abundance compared to the

mock community (Table 4). Corresponding with results

from the mock community, mothur and UCLUST pro-

duced similar OTU numbers to one another, and UPAR-

SE produced lower numbers in all cases. OTU numbers

using each of the identity definitions also showed similar

patterns to the results for the mock community

(Table 4). As with the mock community, there is always

a chance that not all species present in the sample will

be successfully amplified and recovered. Results from

stringent procedures likely reflect a more accurate repre-

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 2263

J. M. Flynn et al. Testing Metabarcoding Data Analysis Methods



sentation of the diversity of the sample, while possibly over-

splitting some species or missing a few rare biological

sequences. This suggests that applying the most accurate

workflow we found from the mock community on natu-

ral zooplankton communities (for which the ground

truth species composition is not known) should produce

accurate biodiversity estimates.

Conclusions

Metabarcoding results based on length variable regions,

such as 18S, are strongly influenced by the data processing

workflow used. Our results indicate that the choice of data

filtering, clustering algorithms, and specific parameters has

significant impact on the biodiversity estimates generated

with metabarcoding data. Overall, we found a very large

variation in the number of OTUs produced, ranging from

60 to 5068 for the mock community, with some workflows

greatly oversplitting OTUs. This variation was largely pro-

duced by the interaction of different filtering regimes –
particularly trimming sequences to a uniform length or

retaining sequences of variable length – with the method of

treating gaps in the alignment when calculating sequence

divergence. Treating each nucleotide in a gap as a differ-

ence (each gap) resulted in great overestimation of OTU

number, and this was largely due to terminal gaps created

in alignments, which are treated as differences in the calcu-

lation of sequence divergence and not as missing data with

this definition. Relaxed procedures including filtering and

the inclusion of singletons allowed for the detection of only

a few species not identified with stringent procedures (e.g.,

42 vs. 40 species), but overestimated diversity in terms of

OTU number, sometimes extensively (e.g., 114 vs. 68

OTUs). The clustering algorithm UPARSE was more pre-

cise and produced more consistent OTU numbers even

with relaxed filtering and when including singletons,

whereas mothur and UCLUST produced varied and

inflated OTU numbers. UPARSE produced OTU numbers

in closest concordance with the number of species in the

mock community than the other clustering algorithms,

even though it uses each gap. When methods were tested

on a natural community, OTU numbers showed patterns

similar to our mock community results, supporting that

our findings are applicable to natural communities typi-

cally sampled for applications such as biodiversity assays.

We suggest that analysis methods should be considered

carefully and be tailored to the purpose of the study. If the

research goal is to accurately describe biological diversity

using OTUs and avoid gross overestimation of species

numbers, a stringent approach is more appropriate. How-

ever, if the research goal is to identify low abundance spe-

cies such as those that may be endangered or new invaders,

a more relaxed approach could be more sensitive, provid-

ing the researcher is prepared to reconcile the effects of

artifacts. The metabarcoding field benefits from awareness

of the impacts of data processing procedures on biodiver-

sity estimates, including specific parameters. For markers

that contain extensive length variation, the proper treat-

ment of gaps and the awareness of terminal gaps are essen-

tial to ensure that the clustering algorithm implemented is

not generating gross overestimates of biodiversity.
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