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Abstract The Laurentian Great Lakes are subject to numerous anthropogenic
perturbations, among which invasive species are notable. Sequential invasions of
non-indigenous species have had profound effects within the basin’s ecosystems.
Invasive species have altered ecosystem functioning, trophic dynamics, and nutrient
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cycling. They have similarly been implicated in affecting contaminant dynamics,
including their transport and bioaccumulation. This work is a regional synthesis of
aquatic invasive species-induced changes to ecosystem functioning in the Great
Lakes and their tributaries. We have highlighted several species whose impacts on
legacy contaminant, nutrient, and food web dynamics in these lakes have been
particularly strong. Profiled species included filter feeders [zebra mussels (Dreissena
polymorpha) and quagga mussels (D. rostriformis bugensis)], a fish [round goby
(Neogobius melanostomus)], and two invasive plants [common reed (Phragmites
australis) and cattail (Typha spp.)]. Collectively, these species showcase invasive
species’ ecosystem-wide effects. The Great Lakes have a long invasion history.
Despite extensive research efforts, complex food web interactions and synergies
between invasive species and concomitant stressors can obscure causality. These
interactions underscore the need for long-term, spatially resolved studies to under-
stand invasive species’ direct and indirect effects on invaded ecosystems.

Keywords Contaminant, Food web, Impact, Invasive species, Laurentian Great
Lakes

1 Introduction

The Laurentian Great Lakes provide valuable ecosystem services and harbor the
earth’s largest freshwater reservoir. The lakes are, however, subject to numerous
stressors including toxic chemicals, nutrient loading, and climate change [1], which
may interact synergistically [2]. These stressors have caused extensive but often
unpredictable changes over the past few decades. Invasive species – non-indigenous
species that cause ecological, economic, or health problems – are one of the most
important stressors in the Great Lakes [1, 3]. As such, they serve as one of nine high-
level indicators of water quality and ecosystem health for the basin [4].

The Great Lakes are a classic example of a mass biological invasion [5]. The
system contains the greatest number of non-indigenous species of any studied
freshwater system [6] (Fig. 1), whose annual economic impacts exceed $800 million
[7]. Commercial shipping during the twentieth century spurred non-indigenous
species’ introductions [8], whose ballast water has been the dominant transportation
vector in recent decades [6]. This invasion rate has increased over the past two
centuries owing to greater economic activity (i.e., introduction effort) [9] and,
possibly, facilitation between non-indigenous species (an “invasional meltdown”)
[9, 10].

Studies of invasion have historically focused on terrestrial ecosystems at the
expense of the aquatic [11]. However, high invasion rates in freshwater habitats
underscore the need to better characterize their effects [6]. Freshwater systems are
also extremely sensitive to anthropogenic stressors and harbor a greater proportion
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of high-impact invasive species relative to their marine counterparts [11]. Over
one-third of non-indigenous species in the Great Lakes have significant ecological
or socioeconomic impacts [12, 13], which are cumulatively deteriorating the basin’s
state [4]. These impacts are appreciably broad. Many invasive species are prey for
native predators or predate upon native species. Thus, they have the potential to
induce food web shifts [14–16], alter energy pathways [17], and trigger trophic
cascades [18]. Lake Erie’s food web structure has been most significantly impacted
at the hands of anthropogenic activity, in part due to the presence of invasive
species [19].

On the heels of regulations to restore their health [20], the Great Lakes have
undergone numerous changes [21, 22]. Many such changes were facilitated by
reductions in nutrient point loading [21] and anthropogenic mercury
(Hg) deposition to the basin [reviewed in 23]. Despite these efforts, the basin is
still plagued by a myriad of contaminant-related issues. Nearshore algal blooms
persist [4], and contaminant burdens in many fish have either plateaued or increased
[15, 23–25]. Indeed, these contaminant levels still often exceed consumption guide-
lines [4, 26]. Invasive species are implicated in many of these trends [23–25].

Invasive species may occur alongside (i.e., additive) or interact with (i.e., syner-
gistic) other environmental stressors, including nutrient loading and toxic chemicals
[1, 2, 11] (Fig. 2). Synergies between invaders may further exacerbate their effects
on nutrients and other contaminants in this system [10, 27]. Long-term ecosystem
changes, nutrient trends, and contaminant dynamics have been monitored through
various government-led programs (reviewed in [22, 28–31]). These and other
datasets may be used to examine invasive species’ effects on contaminant dynamics
in the Great Lakes basin.

The purpose of this chapter is to explore recent findings with respect to invasive
species’ direct and indirect effects on nutrient and legacy chemical contaminant
dynamics in the Great Lakes and their tributaries and to highlight current knowledge
gaps. We utilized an indicator species approach, including species such as benthic
filter feeders (Dreissena polymorpha and D. rostriformis bugensis), a benthic fish
(Neogobius melanostomus), and two invasive wetland plants (Phragmites australis
and Typha spp.). Each of the aforementioned is a model invasive species, having
demonstrably affected the structure and function of Great Lakes ecosystems. Fur-
thermore, these species occupy different components of the food web, allowing us to
explore implications of their presence on benthic, pelagic, and coastal ecosystems.
Collectively, they underscore the breadth of invasive species’ impacts on contami-
nant dynamics and nutrient cycling. In this chapter, we examined effects on stable
isotopes, nutrients, and a range of legacy contaminants including polychlorinated
biphenyls (PCBs) and heavy metals, highlighting alterations in cycling, availability,
magnification, and ratios. We constrained our scope to developments over the past
5 years.

To identify relevant papers published during the period of interest (2014 through
November 2019 inclusive), we conducted a systematic literature review using ISI
Web of Knowledge and Scopus for the terms: (“invasive species” or “non-native
species” or “alien species” or “non-indigenous species” or “exotic species”) and
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(“contamina*” or “nutrient” or “environmental chemistry” or “isotope”) and (“great
lakes”). We restricted our focus to studies on the aforementioned focal species.
Using the complement of studies derived from this search, we added additional
papers cited therein, as well as recent papers of which we were aware.

2 Dreissenid Mussels (Dreissena polymorpha and
D. rostriformis bugensis)

2.1 Overview

Dovetailing the Great Lakes Water Quality Agreement between Canada and the
United States [20], nutrient abatement programs successfully suppressed point
loading of phosphorous (P) throughout the Great Lakes, with major declines
between 1980 and 2008 [32]. Despite ongoing management efforts, basin-wide
nutrient conditions are deteriorating [4, 33], which have in part been attributed to
invasive mussels.

Fig. 2 Interactions between concomitant stressors in the Great Lakes basin and the frequency of
their study, separated by interaction type. Interactions have been partitioned into synergies,
antagonisms, and additive effects. Interactions between invasive species – and with other stressors –
are depicted. Inv. spp. invasive species; N � P nitrogen loading � phosphorus loading, climate
climate change, Dev. coastal urban development. Reprinted from Ecological Indicators, Vol
101, Smith SDP, Bunnell DB, Burton Jr. GA, Ciborowski JJH, Davidson AD, Dickinson CE,
Eaton LA, Esselman PC, Evans MA, Kashian DR, Manning NF, McIntyre PB, Nalepa TF, Pérez-
Fuentetaja A, Steinman AD, Uzarski DG, Allan JD, Evidence for interactions among environmental
stressors in the Laurentian Great Lakes, 203–211, 2019, with permission from Elsevier
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The zebra mussel (Dreissena polymorpha) and its congener the quagga mussel
(D. rostriformis bugensis) (hereafter dreissenid mussels) were introduced to the
Great Lakes shortly after the binational agreement was ratified. Invasive dreissenids
were first detected in Lake Erie – zebra mussels in 1986 [34] and quagga mussels in
1989 [35] – after which both species spread widely. Dreissenids have demonstrably
affected the Great Lakes, to the extent that they have been classified as the top
environmental stressor [36]. As ecosystem engineers [37], dreissenids have had
significant top-down and bottom-up effects throughout the Great Lakes. Below we
highlight many of the changes to nutrient, stable isotope, and legacy contaminant
dynamics associated with these species.

2.2 Phosphorous

Dreissenid mussels (Dreissena polymorpha and D. rostriformis bugensis) have
affected waterbodies throughout the basin both directly and indirectly. In the former,
dreissenids amplify the rate at which particulates are removed from the water column
and sequestered into the sediment [38, 39]. In the latter, dreissenids assimilate P in
their soft tissues and shells or excrete it as feces or pseudofeces into the sediment-
water interphase [40–42]. Excreted P subsequently stimulates primary production in
the nearshore benthic region [37, 42].

By tying up available nutrients in the nearshore and impeding offshore availabil-
ity for primary producers, dreissenids have created “feast and famine” conditions in
primary production [4] and an aptly termed “nearshore shunt” [37, 43]. Consequently,
dreissenids are concomitantly implicated in eutrophication of the nearshore benthic
zone and oligotrophication of the offshore pelagic zone [39–42, 44, 45]. Observed
decreases in total P offshore are consistent with bottom-up effects of dreissenids
[38, 39, 46] and are concordant with their spread [47]. Ultimately, low P concen-
trations offshore may impede the basin’s ability to support productivity [4, 46]. Con-
tinued nutrient loading from tributaries may further exacerbate this dichotomy [48],
highlighting the complex interactions between dreissenids and other anthropogenic
stressors.

2.3 Stable Isotopes

Stable isotope analyses can help assess invasive species’ food web changes [49] and
have recently been co-opted to quantify long-term effects of dreissenids to aquatic
ecosystems. The dreissenid invasion has resulted in the predominance of nearshore
energy channels (described above). This has altered trophic dynamics of food webs
within the basin, particularly in Lake Michigan [17]. Long-term datasets for lakes
Michigan, Huron, Ontario, and Erie have reported dramatic declines in Diporeia, an
amphipod involved in energy cycling [4, 50, 51]. These declines were coincident
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with the dreissenid invasion and spread [4, 14, 50, 51] which may have inhibited
Diporeia foraging [52]. Through reduced prey availability, dreissenids appear to
have forced dietary shifts in top predatory species, increasing the reliance of pelagic
fish on nearshore benthic energy channels [14, 17]. This has corresponded to δ13C
enrichment and δ15N declines in the pelagic and profundal fish community relative
to baseline [17]. Similar benthic energetic shifts have been reported elsewhere for
Lake Michigan [53] and Lake Ontario [54]. These phenomena underscore the extent
to which these mussels have contributed to restructuring food webs basin-wide.

2.4 Carbon, Nitrate, and Silica

Dreissenids have caused extensive basin-wide changes to carbon (C) dynamics and
biogeochemical cycling [55]. In particular, lakes Michigan, Huron, Erie, and Ontario
have undergone carbon dioxide (CO2) supersaturation, with the most demonstrable
changes occurring in Lake Michigan’s heavily infested waters [55]. Observed
increases in the partial pressure of CO2 ( pCO2) have also been attributed to the
dreissenid invasion [55].

In addition to the above-described impacts, decreases in particulate C in both
Lake Michigan and Lake Huron [38, 41], increases in dissolved inorganic C in Lake
Ontario [56], and increases in nitrate (NO3) and silica throughout the basin [38, 41]
have similarly been reported. These changes have likewise been ascribed to
dreissenids and are concurrent with their spread [38, 41, 57]. Dreissenids have
similarly produced ecosystem-wide effects on nutrient dynamics in smaller, inland
lakes [42], though these effects appear to be highly context-dependent. In offshore
waters of lakes Michigan and Huron, dreissenids’ indirect effects predominate over
those attributed to direct grazing [41]. In Saginaw Bay, Lake Huron nutrient loading
appears to have a stronger influence on the food web than do dreissenids [58]. Green
Bay, Lake Michigan, also varies from typical patterns, as the response to the
dreissenid invasion is seemingly overwhelmed by nutrient inputs [59].

2.5 Legacy Contaminants

Dreissenids are sentinel organisms for chemical contaminants and bioaccumulative
pollutants owing to their prolific filter feeding [60]. Dreissenids mobilize and
biomagnify sediment contaminants, whose filtration increases sedimentation of
contaminants like titanium dioxide [61] and PCBs [62]. They may thus provide an
entry point to benthic food webs [62] once ingested by sediment-dwelling amphi-
pods and chironomids [15].

Dreissenids may act as a conduit for Hg bioaccumulation and accelerate its
methylation [63]. Dreissenid-induced shifts in energy pathways have stimulated
the proliferation of filamentous benthic green algae (Cladophora glomerata),
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whose growth is facilitated by dreissenid pseudofeces [64]. In Lake Michigan, the
nearshore benthic zone supports dense dreissenid-Cladophora assemblages in which
heightened levels of methylmercury (MeHg) are found [63]. Decaying mats of
Cladophora support MeHg production [65, 66] and facilitate its entry into food
webs [63]. Nearshore dreissenids that cohabit with and consume Cladophora harbor
greater MeHg concentrations relative to offshore mussels [63]. In this way,
dreissenids may act as a vector for MeHg bioaccumulation once consumed by top
predators, which now disproportionally feed on prey in nearshore benthic regions
[17]. By hindering offshore productivity and initiating declines in Diporeia
populations, dreissenids may also contribute to truncated growth rates and higher
Hg loads of top predatory fishes throughout the basin [14, 27, 53].

3 Round Goby (Neogobius melanostomus)

3.1 Overview

Non-indigenous fishes can have significant consequences to food web dynamics
[67]. The invasive round goby (Neogobius melanostomus) is a striking example. The
fish was first documented in the St. Clair River in 1990 [68]. By 1999, the species
was well-established throughout the Great Lakes [69], whose proliferation appears
to have been facilitated by zebra mussels introduced several years prior [70]. As the
most abundant non-indigenous vertebrate in the Laurentian Great Lakes-St. Law-
rence River basin [71], they have drawn concern over their long-term effects on
ecosystem functioning [72]. Below we present an overview of their effects on stable
isotopes and legacy contaminants.

3.2 Stable Isotopes

Top predatory fish within the basin have flexibly responded to recent changes in prey
availability. In the Great Lakes, round goby (Neogobius melanostomus) are heavily
predated by piscivores, including brown trout (Salmo trutta) [73, 74], smallmouth bass
(Micropterus dolomieu) [16], steelhead (Oncorhynchus mykiss) [75], burbot (Lota lota)
[76], and lake trout (Salvelinus namaycush) [27, 73, 77]. Consequently, foraging
patterns of top pelagic predators have shifted to exploit this abundant prey source.
Diets of many fishes now include significant contributions from nearshore carbon
energy sources in lakes Superior, Huron, and Ontario [27, 74, 77]. Given these dietary
shifts, many predatory fishes have lower δ15N and higher δ13C values relative to
pre-invasion scenarios [73]. Round goby (Neogobius melanostomus) has similarly
become the dominant prey item for native benthic lake sturgeon (Acipenser fulvescens)
in Lake Ontario. δ15N enrichment in sturgeon has been linked to the round goby
introduction [78].
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3.3 Legacy Contaminants

Synchronized invasions of dreissenids and round goby (Neogobius melanostomus)
have generated otherwise absent connections between benthic and pelagic food webs
in the Great Lakes [79]. Round goby (Neogobius melanostomus) serves as a conduit
for contaminant uptake and transfer via dreissenid consumption [73], the latter of
which act as sentinels for contaminants (as described above). Together, these species
have mobilized sequestered pollutants [62, 79] and precipitated changes in contam-
inant bioaccumulation in upper trophic levels [80]. More specifically, these species
have engendered community-wide shifts in contaminant transfer toward the near-
shore benthos [17, 27]. This shift has significant implications for fish contaminant
burdens. In Lake Erie, round goby (Neogobius melanostomus) is the prominent prey
for smallmouth bass [16]. This reliance is purported to drive increases in smallmouth
bass polybrominated diphenyl ether (PBDE) levels in future years [79].

3.3.1 Hg

Round goby (Neogobius melanostomus) is a strong vector for persistent contami-
nants such as Hg. Round goby (Neogobius melanostomus) and dreissenid mussels
(Dreissena polymorpha and D. rostriformis bugensis) have collectively been asso-
ciated with recent trend reversals in fish Hg concentrations within the basin [81]. For
instance, total Hg concentrations in Lake Ontario walleye have remained constant
over the past 40 years despite reduced contaminant emissions, due in part to food
chain lengthening by invasive species [26]. Round goby (Neogobius melanostomus)
has also been linked to elevated Hg levels in fish in lakes Huron [27], Michigan [53],
and Erie [25]. Namely, the goby and dreissenid invasions into Lake Huron coincided
with the collapse of prey populations [82, 83]. Top predatory fish subsequently
relied on alternative sources of food – including gobies [27] – which contain lower
energy density relative to their preferred prey [84]. This trend is particularly salient
in lake trout, whose stunted growth rates and higher Hg concentrations have been
linked to the round goby (Neogobius melanostomus) invasion across multiple lakes
[4, 27, 53]. In Lake Michigan, increased lake trout Hg concentrations were reported
following the round goby (Neogobius melanostomus) and dreissenid invasions
[53]. These changes to Hg bioaccumulation manifested in light of decreased emis-
sions over the period surveyed [85, 86]. In turn, these data indicate the
disproportionally negative effect of invasive species on lake trout contaminant
burdens [53].
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4 Common Reed (Phragmites australis) and Cattail (Typha
spp.)

4.1 Overview

Great Lakes coastal wetlands provide essential ecosystem services [87], filtering
nutrient-rich runoff prior to entering larger waterbodies [88]. They also serve as C
sinks [89] given their high rates of primary production and slow decomposition
[90]. These traits make wetlands highly susceptible to plant invasions [91] which are
often aided by sediment and nutrient enrichment [4]. In recent years, Great Lakes
wetlands have been subject to elevated nitrogen (N) inputs [92]. This has driven C
accretion [93] and facilitated plant invasions [94–96]. Invasive plants are ubiquitous
in Great Lakes coastal wetlands, dominating up to 70% of total vegetation cover
[97]. The cattail (Typha spp.) and common reed (Phragmites australis, hereafter
Phragmites) are presently two of the most successful invasive plants in North
American wetlands [91].

Three cattail species are found in the Great Lakes: Typha latifolia, the European
narrow leaf Typha angustifolia, and Typha � glauca, wherein the latter two species
are invasive [98–100]. Typha x glauca is a hybrid between native T. latifolia and
introduced T. angustifolia [98] (hereafter, both invasive cattail species will collec-
tively be referred to as invasive Typha). Invasive Typha is abundant throughout the
Great Lakes [101]. Actively displacing native wetland communities, it comprises up
to 50% of wetland area in Lake Ontario alone and dominates 13.5% total Great
Lakes wetland area [97]. Typha has significant and well-documented negative
effects on native plant diversity [95, 102], impacts that correlate positively with its
stand age [102]. Highly dense Typha stands produce prodigious amounts of litter,
which accumulate for decades following its invasion [103]. Among other effects, its
high litter mass may imperil fish community diversity by stimulating anoxic condi-
tions. In a Lake Michigan coastal wetland, Typha’s recalcitrant litter led to reduc-
tions in fish abundance and diversity by reducing dissolved oxygen levels
[104]. Typha’s presence may also facilitate the establishment of other aquatic
invasive plants [105], further extending the span of observed impacts.

Phragmites is one of the worst invasive species in North American wetlands
[106], of which two strains are present in North America [107]. The invasive
Eurasian strain is now ubiquitous throughout the Great Lakes [108] where it is
particularly abundant in Lake St. Clair, Lake Huron, and Lake Michigan [4]. While
the lower Great Lakes are at most immediate risk for further expansion, climate
change will likely also increase susceptibility of the upper Great Lakes’ coastal
zones [109]. Phragmites is adept at colonizing nutrient-rich systems, effects of
which are extensive. Phragmites negatively influences plant biodiversity [95] and
threatens 25% of at-risk species in Ontario alone [110].

Relative to native species, Phragmites and Typha have greater aboveground bio-
mass [96, 111, 112] and produce larger amounts of recalcitrant litter [95, 111]. They
also have tremendous capacities for nutrient removal. Indeed, their larger relative sizes
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may permit access to more resources and portend a competitive advantage relative to
comparative natives [94, 113]. Below, we summarize their effects on N and C
dynamics and their interactive effects with other anthropogenic stressors.

4.2 Nitrogen

Both invaders alter nutrient cycling regimes [94, 102], promoting greater N retention
relative to native species [94, 112]. Typha increases inorganic N soil pools
[103, 114]. Sites invaded by Typha often exhibit higher soil organic matter, NO3,
and ammonium (NH4

+) concentrations relative to native sites, as demonstrated in
coastal wetlands abutting lakes Michigan and Huron [102, 114, 115]. Wetlands
dominated by Typha also boast higher denitrification potentials relative to those
dominated by native species [102]. These effects correlate positively with stand age
[102]. Despite the ecosystem services Typha confers, benefits must be gauged
against their strong negative effects and measured over time [102]. Indeed, Typha’s
positive ecosystem functions were temporally mediated in a Lake Michigan wetland
[115]. Similar trade-offs between ecosystem services are likewise apparent for
Phragmites [112].

Litter decomposition rates of common reed (Phragmites australis) and cattail
(Typha spp.) are similar [116]. In two inland Michiganian lakes, the invasions of
both plants increased organic matter storage and aboveground biomass N stocks
[95]. While Phragmites’ leaves have a higher N content relative to Typha, both
plants had similar effects on N standing stocks in a Lake Erie coastal marsh
[112]. Typha’s slow-decomposing plant litter also appears to be disproportionately
responsible for its impacts on ecosystem functioning [114]. Their litter increases
inorganic N and N mineralization rates and has been implicated in the decline of
native plant richness and abundance [114].

Interestingly, [117] found no difference in NO3, ammonia (NH3), soil organic
matter, or denitrification potentials between inland Lake Michigan wetland areas
dominated by invasive Phragmites relative its native counterpart. Despite these
similarities, Phragmites growth in Lake Michigan wetlands was more positively
correlated with nutrient availability – in particular, inorganic N [118] – a testament to
its efficient resource use.

Both invaders are adapted to nutrient-rich habitats and interact synergistically
with nutrient loading [4, 109, 119]. Ecosystem modelling suggests that nutrient
loading fuels Typha dominance [119] and Phragmites presence [109]. However,
nutrient effects on Phragmites distribution may be lake and context-specific
[109, 118]. Notwithstanding potential context dependencies, this synergy suggests
that a more nuanced management strategy – reduced external nutrient loading –may
provide an attractive alternative to traditional herbicide management [119].
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4.3 Carbon

The dominance of both invaders is positively related to aboveground biomass and C
standing stocks [95, 112]. Common reed (Phragmites australis) and cattail (Typha
spp.) promote C accumulation in surface litter and soils [102, 111, 112, 116], even
under low N levels [93]. In doing so, these invaders have the capacity to significantly
alter the structure and function of coastal wetlands [93].

Together, these plants drive wetland C accretion through increased primary
productivity [93]. Phragmites can affect C cycling through high rates of C assimi-
lation [120] and net primary production [116]. These rates often exceed those of
native meadow marsh [112]. Stemming from their greater maximum size, wetlands
invaded by Phragmitesmay promote greater C storage relative to Typha [93]. Phrag-
mites may also disproportionately alter wetland C budgets, whose sediment CO2

release is greater than in Typha sediments [116]. Conversely, Typha monospecific
stands have greater C mineralization rates and more labile soil organic matter relative
to Phragmites [95]. Despite these disparities, effects on annual C stocks appear to be
similar [112]. While Phragmites promoted greater C assimilation relative to native
meadow marsh in a Lake Erie coastal marsh, assimilation rates and C stocks were
equal to that of Typha [112].

Typha soil methane (CH4) emissions are thrice that of native-dominated
mesocosms, due in part to their greater aboveground biomass and productivity
[111]. These emission rates also exceed that of Phragmites, which may reduce
CH4 emissions from sediments [116]. Importantly, nutrient loading may indirectly
facilitate greater CH4 emissions by stimulating Typha productivity [111], exacerbat-
ing the already high global warming potential of wetlands [121].

5 Knowledge Gaps

In this chapter, we summarized recent research on several invasive species’ effects
on legacy contaminant, chemical, and nutrient dynamics in the Great Lakes basin.
Disentangling invasive species’ effects from the milieu of stressors with which they
co-occur continues to be problematic. Several factors complicate cause-and-effect
relationships. Other current and sometimes-synergistic anthropogenic stressors –

such as nutrient loading – may obfuscate invasive species’ relative effects
[52, 93]. Modelling may offer one way to unravel ecosystem-level effects of
invaders [52], and their application is encouraged.

Invasive species represent an unprecedented energy pathway. However, their
influences on contaminant bioaccumulation and biomagnification require further
study [27, 79]. Broad effects are difficult to infer given that contaminant trends are
often system- and species-specific [122] and affected by among-year variability in
fish contaminant loads [26]. Indeed, Hg concentrations may exhibit considerable
spatiotemporal variation, both within and among trophic levels [24]. Concomitant
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stressors are also likely to influence legacy contaminant uptake and accumulation
[24, 25]. To further complicate matters, the extent to which natives predate upon
invasive species is context-dependent in smaller inland lakes [123]. These complex-
ities may ultimately hinder causal inferences.

There is a pressing need for long-term, high-frequency, high-quality data to
clarify the mechanisms of invasive species’ impacts on nutrient and contaminant
dynamics within the Great Lakes. Given high among-lake variability in contaminant
patterns [24, 124], responses to invasive species are likely to vary between systems
and spatially and temporally within a system [2, 51]. Differences in temporal
resolution [38] and high inter-annual variation in time series data [52] can also
obstruct clear trends by providing competing results. These context dependencies are
similarly applicable in coastal wetlands [112], wherein impacts of invasive plants
often only materialize over time [102]. Such system contingencies can have pro-
found influences on the accurate quantification of invasive species’ impacts. These
context dependencies emphasize the importance of multi-lake, spatially resolved
studies. However, this objective is complicated by the need for binational
interagency laboratory cooperation. A coordinated binational strategy is imperative
to effectively understand and manage invasive species’ impacts throughout the
basin. Unfortunately, binational regulations for the management of aquatic invasive
species are currently lacking [125].

Data gaps compromise our ability to accurately estimate invasive species’ effects
on food web dynamics for even the most well-studied lakes [52]. For instance,
invasive species’ trophic roles are understudied in Lake Michigan, despite being a
relatively data-rich waterbody [73]. Furthermore, the paucity of historical baseline
diet information for nearshore native predators in Lake Michigan may impede
understanding of invasive species’ effects on ecosystem processes [73]. In Lake
Erie, nutrient dynamics and phosphorous recycling also demand further study [19].

Our review revealed unequally distributed research efforts among our focal
species. The recent literature is replete with studies on dreissenid mussels (Dreissena
polymorpha and D. rostriformis bugensis), seemingly at the expense of other
invaders. Despite their pivotal role in restructuring ecosystems, such biases may
impede a holistic understanding of invasive species’ impacts throughout the basin.
Research foci within each indicator species also appeared skewed. Round goby
(Neogobius melanostomus) and dreissenids have collectively shifted food web
dynamics, whose impacts are inextricably linked [27, 70, 73, 79, 80]. While fre-
quently reported in unison, future researchers should continue to unravel these
species’ relative and cumulative influences. Despite being the subject of consider-
able research, dreissenids’ effects on C dynamics are largely unknown (but see
[126]). Likewise, the way in which invasive plants influence C accretion – alone
and through synergistic interactions with nutrient loading – is unclear [93]. The
extent to which Typha and Phragmites affect nutrient cycling beyond N and C is also
ill defined [112]. Collectively, these information gaps have cascading consequences
for understanding broad implications of these species’ invasions.
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6 Conclusion

The Great Lakes have experienced extensive invasive species-induced perturbations
in their structure and function. Significant progress has been made over the past
several years to understand the extent of these effects. Nevertheless, our review
revealed several knowledge gaps, which may impede a comprehensive understand-
ing of invasive species’ impacts within the basin. Species’ invasions require broad,
coordinated approaches in their study and management. Despite recent develop-
ments, concerted efforts are essential to further unpack invasive species’ ecosystem-
level effects on legacy contaminant, nutrient, and food web dynamics.
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